

Deutsche Schule Tokyo Yokohama

Schulcurriculum Sekundarstufe I

Klassen 5-12

Physik

Klassen 5-10: Durch die KMK genehmigt: 273. BLASchA vom

14./15.12.2016

Klassen 11-12: Zur Erprobung durch die KMK genehmigt vergl. Schreiben Frau Meyer-Wyk, Sächsisches Staatsministerium für Kultus vom 6. Juli 2012 (wie eingereicht genehmigt, siehe KMK-Schreiben vom 29.8.2012)

Deutsche Schule Tokyo Yokohama

Schulcurriculum Sekundarstufe I

Klassen 5-10

Physik

Durch die KMK genehmigt: 273. BLASchA vom 14./15.12.2016

1. Der Physikunterricht an der Deutschen Schule Tokyo Yokohama

Die Deutsche Schule Tokyo Yokohama ist ein Lern- und Erfahrungsraum. Sie verbindet fachliches mit fächerübergreifendem Arbeiten, fördert ganzheitliches Lernen, erzieht zu Toleranz und Solidarität und stärkt die Individualität der Kinder und Jugendlichen.

Entsprechend dem formulierten Auftrag entfalten die Lehrpläne ein Konzept von Grundbildung, das die Verzahnung von Wissensvermittlung, Werteaneignung und Persönlichkeitsentwicklung beinhaltet.

Grundbildung zielt auf die Entwicklung der Fähigkeit zu vernunftbetonter Selbstbestimmung, zur Freiheit des Denkens, Urteilens und Handelns, sofern dies mit der Selbstbestimmung anderer Menschen vereinbar ist.

Ziel ist es, alle Schüler zur Mitwirkung an den gemeinsamen Aufgaben in Schule, Beruf und Gesellschaft zu befähigen.

Um diese Grundbildung zu sichern, werden in der Schule Kompetenzen ausgebildet, wobei die Entwicklung von Lernkompetenz im Mittelpunkt steht. Lernkompetenz hat integrative Funktion. Sie ist bestimmt durch Sach-, Sozial-, Selbst- und Methodenkompetenz.

Kompetenzen werden in der tätigen Auseinandersetzung mit fachlichen und fächerübergreifenden Inhalten des Unterrichts- im Sinne von Kompetenzen für lebenslanges Lernen - erworben. Sie schließen stets die Ebenen des Wissens, Wollens und Könnens ein. Die Kompetenzen bedingen einander, durchdringen und ergänzen sich gegenseitig und stehen in keinem hierarchischen Verhältnis zueinander. Ihr Entwicklungsstand und ihr Zusammenspiel bestimmen die Lernkompetenz des Schülers.

Die Kompetenzen haben Zielstatus und beschreiben den Charakter des Lernens.

An ihnen orientieren sich die Fächer, das fächerübergreifende Arbeiten und das Schulleben im Gymnasium.

Die in den **gymnasialen Klassen** vermittelte Grundbildung erfährt ihre Spezifik durch eine wissenschaftspropädeutische Komponente und die Entwicklung von Studierfähigkeit, zu der jedes Fach einen Beitrag leistet.

Wie in den anderen Schularten ermöglicht der Unterricht im Gymnasium ganzheitliches Lernen, entwickelt humane Werte- und Normvorstellungen und hilft, auf die Bewältigung von Lebens-anforderungen vorzubereiten.

Folgenden Fähigkeiten sind von herausragender Bedeutung:

- Entwicklung der Bereitschaft und der Fähigkeit zu kommunizieren und zu kooperieren,
- Entwicklung eines selbstständigen Problemlöseverhaltens,
- Förderung von Kreativität und Phantasie,

- Entwicklung von Selbstbewusstsein und Selbstdisziplin, Leistungsbereitschaft und Konzentrationsfähigkeit,
- Entwicklung der Fähigkeit zum systematischen, logischen und vernetzenden Denken sowie zum kritischen Urteilen.

Die **Klassenstufen 10 bis 12** sind gekennzeichnet durch die Vertiefung der Grundbildung, einen höheren Anspruch an die Selbstständigkeit des Schülers, die Vervollkommnung der Methoden des selbstständigen Wissenserwerbs und wissenschaftspropädeutisches Lernen.

Die in der **Realschule** vermittelte Grundbildung erfährt ihre Spezifik durch eine berufsorientierende und berufsvorbereitende Komponente. Die praktische, handlungsorientierte Ausrichtung der Realschule ist eines ihrer wesentlichen Merkmale.

Bedingt durch unterschiedliche Lebensbedingungen und Lernvoraussetzungen sowie die Vielfalt von Wertevorstellungen der Schüler entstehen im Hinblick auf unterschiedliche Lebens- und Berufsperspektiven heterogene Lerninteressen und Zielstellungen. Dieser Situation wird die Realschule durch ihr differenziertes Bildungsangebot gerecht. Sie strebt ein ausgewogenes Verhältnis zwischen optimaler Förderung des Einzelnen und sozialer Chancengerechtigkeit an und befindet sich dabei stets im Spannungsfeld von allgemein gültigen Aufgabenstellungen und individueller Entwicklung.

Die spezifischen Bedingungen des Unterrichtens von Schülern, die den **Hauptschulabschluss** anstreben, erfordern besondere Überlegungen. Sie richten sich in besonderem Maße auf exemplarische Behandlung an ausgewählten Beispielen, auf die verstärkte Einbeziehung praktischer Beispiele aus dem täglichen Leben, die Berücksichtigung eines hohen Anteils praktischer Handlungen sowie auf Vereinfachungen bei der Arbeit mit Modellen und bei der Mathematisierung physikalischer Sachverhalte.

Folgende Hinweise für die Real- und Hauptschule sind zu beachten:

- Der Unterricht muss so gestaltet sein, dass er das Interesse am Fach bei Jungen und Mädchen gleichermaßen weckt.
- Die Schülerexperimente werden unter Anleitung vorbereitet, durchgeführt und ausgewertet, wobei in der Klassenstufe 8 zunehmende Selbstständigkeit angestrebt wird. Es werden zunächst keine umfangreichen Protokolle angefertigt.
- Die Arbeit mit dem Tafelwerk wird in Klassenstufe 7 eingeführt. Ab Klassenstufe 8 wird die Verwendung weiterer Literaturquellen empfohlen.
- Berechnungen erfolgen nur, soweit es für das Verständnis der physikalischen Inhalte unbedingt notwendig ist. Eine Abstimmung mit dem Fach Mathematik ist erforderlich.
- An geeigneten Stellen des Unterrichts sind historische Betrachtungen einzubeziehen.

Im Rahmen des Gesamtkonzeptes pädagogischen Handelns an der Auslandsschule bilden die folgenden Aspekte wesentliche Orientierungen für die Unterrichtsgestaltung im Fach Physik:

- Anknüpfung an die individuellen Besonderheiten, die geistigen, sozialen und körperlichen Voraussetzungen der Schüler,
- Gestaltung eines lebensverbundenen Unterrichts, insbesondere
 - Anknüpfung an die Erfahrungswelt der Schüler
 - Anschaulichkeit und Fasslichkeit
 - Bezugnahme auf aktuelle Gegebenheiten und Ereignisse
 - Anknüpfung an historische Gegebenheiten, Ereignisse und Traditionen
 - Einbeziehen vielfältiger, ausgewogen eingesetzter Schülertätigkeiten
 - fächerübergreifendes, problemorientiertes Arbeiten,
- individuelles und gemeinsames Lernen in verschiedenen Arbeits- und Sozialformen,
- Berücksichtigung des norm- und situationsgerechten Umgangs mit der Muttersprache,
- Förderung von Kommunikation sowie von kritischem Umgang mit Informationen und Medien,
- Schaffen von Anlässen und Gelegenheiten zu interkulturellem Lernen,
- Gestaltung eines Unterrichts, der die Interessen und Neigungen von Mädchen und Jungen in gleichem Maße anspricht und fördert.

Primäres Ziel schulischen Lernens muss die Sicherung der Grundbildung bleiben. Von dieser Basis aus können weitere Fragestellungen beantwortet werden, die schulisches Lernen heute zunehmend bestimmen. In einen zukunftsorientierten Unterricht, der Kinder und Jugendliche darauf vorbereitet, Aufgaben in Familie, Staat und Gesellschaft zu übernehmen, müssen Sichtweisen einfließen, in denen sich die Komplexität des Lebens und der Umwelt widerspiegeln.

Im Unterrichtsfach Physik machen sich die Schüler mit Grundlagen einer Wissenschaft vertraut, die Erscheinungen und Vorgänge in der unbelebten Natur untersucht und deren Erkenntnisse in der Technik in vielfältiger Weise angewendet werden. Mit physikalischen Phänomenen in der Natur und mit Anwendungen physikalischer Erkenntnisse in der Technik bzw. in vielen Bereichen unseres hoch organisierten Lebens kommen die Schüler ständig in Berührung.

Die Schüler erfahren, dass die Wissenschaft Physik unter den Naturwissenschaften eine besondere Stellung einnimmt. Physikalische Erkenntnisse, Denk- und Arbeitsweisen haben nicht nur das Weltbild unserer Zeit in entscheidender Weise geprägt, sondern haben auch andere Naturwissenschaften und die Technik in starkem Maße gefördert. Andererseits wurde und wird die Entwicklung der Physik durch die anderen Naturwissenschaften und die Technik vorangetrieben. Die Schüler setzen sich mit Überlegungen zur sinnvollen Anwendung physikalischer Erkenntnisse sowie deren Möglichkeiten und Grenzen auseinander. Sie gelangen dabei zu der Einsicht, dass dies eng verbunden ist mit Kernproblemen unserer Zeit, wie die Erhaltung der natürlichen Lebensgrundlagen auf unserem Planeten, die Schaffung wirtschaftlicher, technischer und sozialer

Rahmenbedingungen für gesicherte und verbesserte Lebensverhältnisse für alle Menschen und die Bewahrung von Grundwerten menschlichen Zusammenlebens.

Für zahlreiche Berufe ist eine solide physikalische Grundbildung unverzichtbar.

Der Physikunterricht trägt somit in hohem Maße zum Weltverständnis, zu einer vernünftigen Einstellung zur Natur und zur Technik sowie zur praktischen Lebensorientierung bei.

Damit erwachsen dem Unterrichtsfach Physik spezifische Aufgaben beim Erwerb einer umfassenden Grundbildung durch die Schüler.

Die Ziele des Physikunterrichts sind auf den Beitrag des Faches zur Entwicklung der Lernkompetenz gerichtet. Das schließt die Entwicklung von Sach-, Methoden-, Sozial- und Selbstkompetenz ein. Dabei ist die jeweilige Altersstufe zu berücksichtigen.

Das Lernen im Fach Physik wird erleichtert, wenn sich der Unterricht an Leitlinien zu wesentlichen Denk- und Arbeitsweisen, Verfahren und Methoden der Physik orientiert. Fünf Leitlinien zu fachspezifischen Schwerpunkten geben eine Linienführung durch die einzelnen Klassenstufen und Stoffgebiete des Physikunterrichts.

Sachkompetenz umfasst die Fähigkeit, erworbenes Wissen sowie gewonnene Einsichten in Handlungszusammenhängen anzuwenden, zu verknüpfen und sachbezogen zu urteilen.

Im Physikunterricht erwerben die Schüler grundlegendes Wissen über physikalische Erscheinungen, Vorgänge und Zusammenhänge. In Verbindung damit lernen sie wichtige physikalische Begriffe, insbesondere Größen und deren Einheiten kennen, sie von Alltagsbegriffen abzugrenzen und richtig mit ihnen umzugehen. Sie lernen die Fachsprache in angemessener Weise zu gebrauchen.

Sie machen sich mit Leistungen hervorragender Physiker sowie mit der Entwicklung der Physik und ihrer Wechselwirkung mit der Entwicklung der Gesellschaft vertraut.

In den Klassenstufen 7 bis 10 erwerben die Schüler grundlegendes Wissen aus den Gebieten Mechanik, Elektrizitätslehre, Thermodynamik und Optik.

In der Qualifikationsphase der Oberstufe der Deutschen Schule Tokyo Yokohama werden diese Stoffgebiete teilweise wieder aufgegriffen, vertieft und theoretisch weiter durchdrungen. Hinzu treten eine gründliche Behandlung elektrischer und magnetischer Felder und der Zusammenhänge zwischen diesen, die Betrachtung quantenphysikalischer Aspekte und eine vertiefende Behandlung kernphysikalischer Probleme.

Schüler, die später das Fach Physik nicht weiterführen, gewinnen in der Klassenstufe 10 einen abschließenden Überblick zur klassischen Mechanik und zur Kernphysik.

Dieses Wissen soll die Schüler befähigen, die Wechselbeziehungen zwischen Mensch, Natur und Technik aus physikalischer Sicht zu verstehen, die Leistungen hervorragender Forscher zu

würdigen, die Bedeutung der Physik für die Gesellschaft sachkundig einzuschätzen und somit Physik als Kulturgut zu begreifen.

Die Leitlinien

- Teilchen.
- Energie und
- Felder

zeigen die für den Physikunterricht typischen Beiträge bei der Entwicklung von Sachkompetenz auf.

Methodenkompetenz umfasst die Fähigkeit, Lernstrategien zu entwickeln sowie unterschiedliche Arbeitstechniken und -verfahren sachbezogen und situationsgerecht anzuwenden.

Die diesbezüglichen Ziele richten sich auf die Herausbildung von Denk- und Arbeitsweisen der Physik.

Die Schüler erfahren, dass

- mit Hilfe des Experiments physikalische Gesetze erkannt und Vermutungen und Hypothesen überprüft werden können,
- Experimente in der Physik und deshalb auch im Physikunterricht einen entscheidenden Platz im Prozess der physikalischen Erkenntnisgewinnung einnehmen und
- bei der Gewinnung physikalischer Erkenntnisse zwischen Experiment und Theorie eine enge Wechselbeziehung besteht.

Die Schüler erwerben die Fähigkeit,

- physikalische Erscheinungen und Vorgänge gezielt zu beobachten und unter angemessener
 Verwendung der Fachsprache zu beschreiben und zu erklären,
- Fragen zu physikalischen Sachverhalten und Problemen zu finden, zu formulieren und Lösungswege vorzuschlagen,
- mit physikalischen Größen sicher umzugehen,
- Messungen physikalischer Größen durchzuführen und auszuwerten,
- physikalische Experimente vorzubereiten, durchzuführen und auszuwerten,
- Zusammenhänge zwischen physikalischen Größen zu erkennen, physikalische Gesetze zu formulieren, zu überprüfen, zu interpretieren, anzuwenden und deren Gültigkeitsbedingungen zu berücksichtigen,
- mathematische Mittel bei der Arbeit mit physikalischen Größen und mit Zusammenhängen zwischen physikalischen Größen in einem für das physikalische Verständnis gebotenem Maße einzusetzen,
- mit Idealisierungen und Modellen zu arbeiten,

 den Aufbau technischer Geräte und einfacher Experimentieranordnungen in der Physik zu beschreiben, deren Wirkprinzip zu erläutern bzw. zu erklären und dabei ihre erworbenen physikalischen Kenntnisse anzuwenden.

Die Herausbildung von Methodenkompetenz schließt ein, dass die Schüler

- Lehrbücher, Tafelwerke, Taschenrechner, den Computer mit seinen vielfältigen Möglichkeiten und andere Medien zum Wissenserwerb in der Physik nutzen,
- einen Einblick in die verschiedenen Anwendungen moderner informationsverarbeitender Technik gewinnen und
- sich im Unterricht beim Messen, Auswerten und Simulieren von physikalischen Vorgängen mit den Vorzügen dieser modernen Technik vertraut machen.

Die Leitlinien

- Erkunden von Naturgesetzen und
- Mathematische Methoden der Physik zeigen die für den Physikunterricht typischen Beiträge bei der Entwicklung von Methodenkompetenz auf.

Zum Entwickeln experimenteller Fähigkeiten, aber auch zur Ausprägung von Sozialkompetenz sind für die Klassenstufen 7 bis 10 Schülerexperimente ausgewiesen.

Sozialkompetenz umfasst die Fähigkeit, miteinander zu lernen, zu arbeiten und zu leben,

Verantwortung wahrzunehmen und solidarisch zu handeln.

Sozialkompetenz sollen die Schüler weiter vervollkommnen durch

- Entwickeln der Kooperationsfähigkeit beim Durchführen von Schülerexperimenten in Gruppen und gemeinsamen Bearbeiten von Aufträgen und Problemaufgaben,
- Weiterentwickeln von Kooperations- und Kommunikationsfähigkeit (konzentriertes Zuhören, aktive Teilnahme an Gesprächen, gezieltes Fragen, Bereitschaft zur Toleranz gegenüber anderen Meinungen und Ideen, Achtung vor Leistungen anderer) beim Meinungsaustausch zu physikalischen Sachverhalten,
- Ausprägen von Verantwortungsbewusstsein beim sorgsamen Umgang mit physikalischen Geräten und Arbeitsmitteln,
- Entwickeln der Fähigkeit, beim Einschätzen von Konsequenzen physikalischer Forschung durch ihre technische Anwendung sachlich begründete Standpunkte zu beziehen und zu vertreten,
- Erkennen der Notwendigkeit, mit Energie und Materialien sinnvoll, sparsam und umweltschonend umzugehen und daraus Konsequenzen für das eigene Handeln zu ziehen.

Selbstkompetenz umfasst die Fähigkeit, Emotionen, eigene Stärken und Schwächen zu erkennen, Verantwortung zu übernehmen und entsprechend zu handeln.

Selbstkompetenz sollen die Schüler im Physikunterricht vervollkommnen durch

- Entwickeln der Fähigkeit und Bereitschaft, sich zielstrebig mit physikalischen Sachverhalten in Natur und Technik auseinander zu setzen, falsche Meinungen über wissenschaftlich richtige Ergebnisse der Physik zu erkennen und mit solchen Meinungen sachlich umzugehen,
- Herausbilden der Fähigkeit zum Erarbeiten von Strategien für das eigene Handeln beim schrittweisen Planen, Aufbauen, Testen und Optimieren von Experimenten,
- richtiges und bewusstes Verhalten im Fachraum und beim Experimentieren in Bezug auf vorbeugenden Gesundheits- und Arbeitsschutz,
- kritisches Einschätzen der eigenen Leistungen und Verhaltensweisen sowie deren Bewertung durch Mitschüler und Lehrer.

Die im Lehrplan ausgewiesenen Ziele und Inhalte sind verbindlich.

Der Fachlehrer hat die Aufgabe, den Unterricht im Fach Physik so anzulegen und zu gestalten, dass er das Lern- und Arbeitsverhalten der Schüler gezielt beobachtet, kontrolliert und bewertet.

2. Allgemeine Lernziele und Lerninhalte in den Klassenstufe 7 bis 10

In den Klassenstufen 7 bis 10 werden die Kompetenzen entwickelt, auf denen der Unterricht in der Qualifikationsphase der Deutschen Schule Tokyo Yokohama aufbaut.

Die Schüler lernen im Physikunterricht

- das Beobachten und das Erklären von Erscheinungen und Vorgängen in Natur und Technik als wesentliche Methode der Erkenntnisgewinnung im naturwissenschaftlichen Unterricht kennen,
- Experimente zu nutzen, um Gesetze zu erkunden und diese in Worten oder in Form von Größengleichungen zu formulieren,
- über zunächst angeleitetes Handeln das Planen und Durchführen von Experimenten, qualitative Fehlerbetrachtungen vorzunehmen, wobei aber Protokolle kurz gehalten werden sollten,
- auf die Gültigkeitsbedingungen von Größengleichungen zu achten und diese inhaltlich zu interpretieren,
- Definitionen physikalischer Größen inhaltlich zu verstehen,
- mit physikalischen Größen, Einheiten und mit Größengleichungen zu arbeiten, um Vorgänge in Natur und Technik quantitativ zu erfassen,
- die in Größengleichungen enthaltenen inhaltlichen Aussagen mit Hilfe physikalischer Begriffe sprachlich darzustellen,
- beobachtbare Phänomene zu deuten und zu erklären,
- die Bedeutung der Energie als eine Erhaltungsgröße bei vielen physikalischen Vorgängen kennen,
- physikalische Modelle als ein wichtiges Erkenntnismittel in der Physik zu verwenden
- den Beitrag wissenschaftlicher Entdeckungen zur Erkenntnis der Natur und für die Weiterentwicklung der Technik einzuschätzen,
- das Tafelwerk und den Taschenrechner zur Lösung physikalischer Fragestellungen zu nutzen,
- im Umgang mit Lehrbüchern und Nachschlagewerken sicher zu werden und zunehmend selbstständig fachspezifische Informationen aufzusuchen, aufzunehmen, zu verarbeiten und wiederzugeben,
- den Computer als vielseitiges Mittel einzusetzen,
- mit Arbeitsmitteln sachgemäß und sorgfältig umzugehen, insbesondere mit Schulbüchern und Experimentiergeräten,
- sich mit physikalischen Sachverhalten auseinander zu setzen und dabei konzentriert und zielstrebig vorzugehen,
- die Fachsprache zu gebrauchen, Fragen zu stellen und zu beantworten,
- Leistungen hervorragender Forscher zu würdigen und die Nutzung wissenschaftlicher Erkenntnisse kritisch zu werten.

3. Leistungsbewertung im Physikunterricht

Die **Leistungsbewertung** muss pädagogische und fachliche Grundsätze berücksichtigen.

Die Bewertung muss nicht immer durch eine Zensur, sondern kann auch in verbaler Weise erfolgen. Sie muss für Schüler und Eltern nachvollziehbar sein.

Für die Beurteilung der Sozial- und Selbstkompetenz im Physikunterricht wird auf den erzieherischen Einfluss der verbalen Beurteilung verwiesen.

Die Leistungsbewertung basiert auf den unter den Zielstellungen des Physikunterrichts aufgeführten Kompetenzen, auf den Lernzielstellungen und Lerninhalten der einzelnen Klassenstufen sowie auf in den Freiräumen behandelten Themen. Sie umfasst mündliche und schriftliche Leistungen sowie praktische Tätigkeiten.

Die Leistungsbewertung soll angemessen sein hinsichtlich

- der Kompetenzbereiche,
- der Anzahl und der Formen der Kontrolle sowie
- der Anforderungsbereiche.

Zur Einschätzung der Schülerleistungen hinsichtlich des erreichten Standes und der Entwicklung der Lernkompetenz sind vielfältige Formen zu nutzen.

Bewertet werden können z. B.

- mündliche Leistungskontrollen,
- schriftliche Kurzkontrollen,
- Klassenarbeiten, Kursarbeiten (ab Klassenstufe 10),
- Schülerexperimente und Protokolle,
- Kurzreferate,
- Facharbeiten (in Klassenstufe 10),
- Beiträge in Gruppen- und Unterrichtsgesprächen,
- Aufträge wie Selbstbau von Modellen und Geräten, Wettbewerbsbeiträge, Projektaufträge und deren Präsentation, Mitwirkung bei Demonstrationsexperimenten und bei der fachlichen Betreuung von Schülerexperimenten.

Bei der Leistungsbewertung sind folgende drei **Anforderungsbereiche** angemessen zu beachten:

Der Anforderungsbereich I (Reproduktion) umfasst

- das Wiedergeben von bekannten Sachverhalten aus einem abgegrenzten Fachgebiet im gelernten Zusammenhang sowie
- das Beschreiben und Verwenden gelernter und geübter Arbeitstechniken und Verfahrensweisen in einem begrenzten Gebiet und in einem wiederholenden Zusammenhang.

Der Anforderungsbereich II (Rekonstruktion) umfasst

- selbstständiges Auswählen, Anordnen, Verarbeiten und Darstellen bekannter Sachverhalte unter vorgegebenen Gesichtspunkten in einem durch Übung bekannten Zusammenhang sowie
- selbstständiges Übertragen des Gelernten auf vergleichbare neue Situationen, wobei es entweder um veränderte Fragestellungen oder um veränderte Sachzusammenhänge oder um abgewandelte Verfahrensweisen gehen kann.

Der Anforderungsbereich III (Konstruktion) umfasst

- planmäßiges Verarbeiten komplexer Gegebenheiten mit dem Ziel, zu selbstständigem Deuten,
 Folgern, Begründen oder Werten zu gelangen und
- das Anpassen oder Auswählen gelernter Denkmethoden bzw. Lernverfahren zum Bewältigen von neuen Aufgaben.

In allen Anforderungsbereichen sind Sach-, Methoden-, Sozial- und Selbstkompetenz angemessen und klassenstufenbezogen zu berücksichtigen. Bei Klassenarbeiten und Kursarbeiten werden Anforderungen aus allen drei Bereichen gestellt. Alle anderen Leistungsbewertungen können sich auch auf einen einzigen Anforderungsbereich beschränken. Für die Leistungsbewertung in der Oberstufe sind insbesondere die Hinweise der Einheitlichen Prüfungsanforderungen für das Abitur zu beachten. Ein angemessenes Niveau wird erreicht, wenn das Schwergewicht der zu erbringenden Prüfungsleistung im Anforderungsbereich II liegt und die Anforderungsbereiche I und III berücksichtigt werden. Bis in die Oberstufe sind die Anforderungsbereiche II und III kontinuierlich stärker zu akzentuieren.

Leistungsbewertung in den Klassenstufen 7 bis 9

Die Gesamtleistung eines Schülers in den Klassenstufen 7 bis 9 setzt sich aus seiner schriftlichen Leistung, die in schriftlichen Tests ermittelt wird, sowie der SoMiNo (Sonstige Mitarbeitsnote) zusammen. Diese umfasst mündliche Leistungen aus der direkten Unterrichtsbeteiligung (auch Vorbereitung und Nachbereitung des Unterrichtes), Leistungen die im Schülerpraktikum erbracht werden und sonstige Leistungen wie z.B. Referate oder Präsentationen.

Grundsätzlich soll der Unterricht so gestaltet werden, dass die Schülerinnen und Schüler die Gelegenheit bekommen, mündliche, praktische und sonstige Leistungen zu erbringen.

Sowohl die Ergebnisse der schriftlichen Leistungen als auch die fortlaufend im Unterricht erbrachten Leistungen gehen in die Note für das Zeugnis ein.

Über die Verwendung von Hilfsmitteln wie Taschenrechner und Tafelwerk in schriftlichen Leistungsüberprüfungen entscheidet die Lehrkraft abhängig von der Aufgabenstellung der schriftlichen Arbeit. Zulässige Hilfsmittel sind den Schülerinnen und Schülern grundsätzlich rechtzeitig bekanntzugeben.

Für die Bewertung gilt folgender Notenschlüssel:

Note	1	2	3	4	5
Prozente	85%	70%	55%	40%	20%

Leistungsbewertung in Klassenstufe 10

Anzahl und Dauer der Klausuren:

Halbjahr	Klausur(en)	Dauer (Minuten)
10.1	2	90
10.2	2	90

Klausuren im Fach Physik in der Jahrgangsstufe 10 orientieren sich nach Maßgabe der "Einheitliche(n) Prüfungsanforderungen in der Abiturprüfung - Physik" (Beschluss der Kultusministerkonferenz vom 01.12.1989 i.d.F. vom 05.02.2004) erstellt. Dabei wird besonders darauf geachtet, die dort unter Punkt 2.2 ("Fachspezifische Beschreibung der Anforderungsbereiche") und Punkt 3.2 ("Hinweise zum Erstellen einer Prüfungsaufgabe") aufgeführten Anforderungsbereiche abzudecken. Leistungsüberprüfungen sollen ihren Schwerpunkt in AB II haben und die AB I und AB III angemessen berücksichtigen; bis zur Abiturprüfung werden die ABII und AB III kontinuierlich stärker akzentuiert.

Die Aufgaben werden mit Hilfe der Operatorenliste der KMK formuliert.

Über die Hilfsmittel, die in den Leistungsüberprüfungen verwendet werden können, entscheidet die Lehrkraft unter Berücksichtigung der jeweiligen Aufgabenstellung. Dabei ist dafür Sorge zu tragen, dass alle Schülerinnen und Schüler in angemessener Weise auf den möglichen Einsatz von Taschenrechner und Tafelwerk in den Prüfungen auch mit schulübergreifender Aufgabenstellung vorbereitet werden.

Für die Bewertung der Klausuren gilt folgender Notenschlüssel:

Note	1	2	3	4	5
Prozente	85%	70%	55%	40%	20%

Die Gesamtleistung eines Schülers in der Klassenstufe 10 setzt sich aus seiner schriftlichen Leistung die in den Klausuren ermittelt wird, sowie der SoMiNo (Sonstige Mitarbeitsnote) zusammen. Diese umfasst mündliche Leistungen aus der direkten Unterrichtsbeteiligung (auch Vorbereitung und Nachbereitung des Unterrichtes), Leistungen die im Schülerpraktikum erbracht werden und sonstige Leistungen wie z.B. Referate oder Präsentationen.

Grundsätzlich soll der Unterricht so gestaltet werden, dass die Schülerinnen und Schüler die Gelegenheit bekommen, mündliche, praktische und sonstige Leistungen zu erbringen.

Sowohl die Ergebnisse der schriftlichen Leistungen als auch die fortlaufend im Unterricht erbrachten Leistungen gehen in die Note für das Zeugnis ein.

Besonders ab Klassenstufe 10 ist auf den korrekten Einsatz der Operatoren zu achten.

Im Hinblick auf die Vorbereitung auf die Abiturprüfung, die im Oberstufenunterricht der Einführungsphase in der Klassenstufe 10 bereits beginnt, sind die betreffenden Hinweise in den "Richtlinien für die Ordnung zur Erlangung der Allgemeinen Hochschulreife an deutschen Schulen im Ausland "Deutsches Internationales Abitur" (Beschluss der Kultusministerkonferenz vom 11.06.2015) und im Dokument "Abiturprüfung an Deutschen Schulen im Ausland, Fachspezifische Hinweise für die Erstellung und Bewertung der Aufgabenvorschläge für die Fächer BIOLOGIE, CHEMIE und PHYSIK", (Beschluss des Bund-Länder-Ausschusses für schulische Arbeit im Ausland vom 23. / 24.09.2015) zu berücksichtigen.

Operatorenliste Naturwissenschaften (Physik, Biologie, Chemie) Stand Februar 2013

In der Regel können Operatoren je nach Zusammenhang und unterrichtlichem Vorlauf in jeden der drei Anforderungsbereiche AFB eingeordnet werden; hier wird der überwiegend in Betracht kommende Anforderungsbereich genannt. Die erwarteten Leistungen können durch zusätzliche Angabe in der Aufgabenstellung präzisiert werden.

Operator	Beschreiben der erwarteten Leistung	Beispiele	AFB
ableiten	auf der Grundlage von Erkenntnissen sachgerechte Schlüsse ziehen	Leiten Sie aus den experimentellen Ergebnissen (Linienspektren, Franck- Hertz-Versuch,) die Notwendigkeit ab, das rutherfordsche Atommodell durch Quantisierungsbedingungen zu erweitern.	II
abschätzen	durch begründete Überlegungen Größenordnungen angeben	Schätzen Sie ab, ob hier die Verwendung einer 10-A-Sicherung ausreichend ist.	II
analysieren	systematisches Untersuchen eines Sachverhaltes, bei dem Bestandteile, dessen Merkmale und ihre Beziehungen zueinander erfasst und dargestellt werden	Analysieren Sie den Versuchsaufbau auf mögliche Fehlerquellen.	II
anwenden	einen bekannten Zusammenhang oder eine bekannte Methode auf einen anderen Sachverhalt beziehen	Wenden Sie das Induktionsgesetz auf die beschriebene Situation an.	II
aufstellen von Hypothesen	eine begründete Vermutung formulieren	Stellen Sie eine Hypothese auf, von welchen Größen die magnetische Flussdichte in einer stromdurchflossenen Spule abhängen könnte.	III
auswerten	Daten, Einzelergebnisse oder andere Elemente in einen Zusammenhang stellen, gegebenenfalls zu einer Gesamtaussage zusammenführen und Schlussfolgerungen ziehen	Werten Sie die Versuchsreihen zur Untersuchung der magnetischen Flussdichte in einer stromdurchflossenen Spule aus (und geben Sie die daraus resultierende Formel an).	III
begründen	Sachverhalte auf Regeln, Gesetzmäßigkeiten bzw. kausale Zusammenhänge zurückführen	Begründen Sie, warum die rote Linie des Wasserstoffspektrums keinen Photoeffekt bei Kalium bewirkt.	III
benennen	Begriffe und Sachverhalte einer vorgegebenen Struktur zuordnen	Benennen Sie die Bauteile der abgebildeten Röntgenröhre.	I
berechnen	Ergebnisse aus gegebenen Werten rechnerisch generieren	Berechnen Sie die Gravitationsfeldstärke am Äquator aus dem mittleren Radius und der mittleren Dichte der Erde.	II
beschreiben	Sachverhalte wie Objekte und Prozesse nach Ordnungsprinzipien strukturiert unter Verwendung der Fachsprache wiedergeben	Beschreiben Sie Aufbau und Durchführung des Millikan-Versuchs.	II
bestimmen	Ergebnisse aus gegebenen Daten generieren	Bestimmen Sie mit Hilfe des Diagramms den Wert des planckschen Wirkungsquantums.	II
beurteilen, bewerten	zu einem Sachverhalt eine selbstständige Einschätzung nach fachwissenschaftlichen und fachmethodischen Kriterien angeben	Beurteilen Sie die Anwendbarkeit der C- 14-Methode zur Altersbestimmung in der beschriebenen Situation.	III
beweisen	mit Hilfe von sachlichen Argumenten durch logisches Herleiten eine Behauptung/Aussage belegen bzw. wiederlegen	Beweisen Sie, dass die Ansätze von Bohr und De Broglie zur gleichen Quantenbedingung führen	III

		Ta	
darstellen	Sachverhalte, Zusammenhänge, Methoden, Ergebnisse etc. strukturiert wiedergeben	Stellen Sie das Verfahren der Uran-Blei- Methode zur Altersbestimmung dar.	l
diskutieren	Argumente zu einer Aussage oder These einander gegenüberstellen und abwägen	Diskutieren Sie, ob die Kernfusion als zukünftige Energiequelle wünschenswert ist.	III
dokumentieren	alle notwendigen Erklärungen, Herleitungen und Skizzen zu einem Sachverhalt/Vorgang angeben	Dokumentieren Sie die Entwicklung der Atommodelle von Dalton über Thomson zu Rutherford.	I
erklären	Strukturen, Prozesse, Zusammenhänge, usw. eines Sachverhaltes erfassen und auf allgemeine Aussagen/Gesetze zurückführen	Erklären Sie das Zustandekommen des Spannungsstoßes im beschriebenen Experiment.	II
erläutern	wesentliche Seiten eines Sachverhalts/Gegenstands/Vorgangs an Beispielen oder durch zusätzliche Informationen verständlich machen	Erläutern Sie die Entstehung von Linienspektren am Beispiel von Wasserstoff.	II
formulieren	eine Beschreibung eines Sachverhaltes oder eines Vorgangs in einer Folge von Symbolen oder Wörtern angeben	Formulieren Sie den im Diagramm ablesbaren Zusammenhang mit Hilfe einer Gleichung.	II
herleiten	aus Größengleichungen durch mathematische Operationen eine physikalische Größe freistellen und dabei wesentliche Lösungsschritte kommentieren	Leiten Sie für die Materiewellenlänge der Elektronen beim Versuch zur Elektronenbeugung an Graphit aus der Theorie die Gleichung = ,,, her.	II
Interpretieren, deuten	Sachverhalte und Zusammenhänge im Hinblick auf Erklärungsmöglichkeiten herausarbeiten	Deuten Sie den Verlauf der U-I-Kurve beim Franck-Hertz-Versuch.	III
klassifizieren, ordnen	Begriffe, Gegenstände etc. auf der Grundlage bestimmter Merkmale systematisch einteilen	Ordnen Sie die folgenden Phänomene danach, ob sie sich mit dem Wellenmodell oder dem Teilchenmodell des Lichtes erklären lassen.	II
nennen	Elemente, Sachverhalte, Begriffe, Daten, Fakten ohne Erläuterung wiedergeben	Nennen Sie drei Schwächen des rutherfordschen Atommodells.	I
planen	zu einem vorgegebenen Problem eine Experimentieranordnung finden und eine Experimentieranleitung erstellen	Planen Sie ein Experiment, das zeigen kann, dass die Beugungsfigur in einer Elektronenbeugungsröhre von negativen Ladungsträgern und nicht von Röntgenstrahlung herrührt.	III
protokollieren	Ablauf, Beobachtungen und Ergebnisse sowie ggf. Auswertung (Ergebnisprotokoll, Verlaufsprotokoll) in fachtypischer Weise wiedergeben	Führen Sie die angegebene Versuchsreihe vollständig durch und protokollieren Sie Ihre Arbeit detailliert.	I
skizzieren	Sachverhalte, Objekte, Strukturen oder Ergebnisse auf das Wesentliche reduzieren und in übersichtlicher Weise wiedergeben	Skizzieren Sie den Aufbau des Franck- Hertz-Versuchs.	I
untersuchen	Sachverhalte/Objekte erkunden, Merkmale und Zusammenhänge herausarbeiten	Untersuchen Sie anhand der Messreihe den Zusammenhang zwischen Winkelgeschwindigkeit und Induktionsspannung.	II
verallgemeinern	aus einem erkannten Sachverhalt eine erweiterte Aussage treffen	Verallgemeinern Sie den Zusammenhang zwischen Induktionsspannung und Flächenänderung unter Verwendung der Größe magnetischer Fluss.	II
vergleichen	Gemeinsamkeiten und Unterschiede von Sachverhalten, Objekten Lebewesen und Vorgängen ermitteln		II

zeichnen	eine exakte Darstellung	Zeichnen Sie das zugehörige U-I-	_
	beobachtbarer oder gegebener	Diagramm.	
	Strukturen anfertigen		
zusammenfassen	das Wesentliche in konzentrierter Form wiedergeben	Fassen Sie die experimentellen Befunde zum lichtelektrischen Effekt, die mit dem Wellenmodell nicht erklärt werden können, zusammen.	=

4. Vereinbarung über Bildungsstandards für den Mittleren Schulabschluss (Jahrgangsstufe 10) in den Fächern Biologie, Chemie, Physik

(Beschluss der Kultusministerkonferenz vom 16.12.2004)

4.1 Der Beitrag des Faches Physik zur Bildung

Naturwissenschaft und Technik prägen unsere Gesellschaft in allen Be- reichen und bilden heute einen bedeutenden Teil unserer kulturellen Identität. Das Wechselspiel zwischen naturwissenschaftlicher Erkenntnis und technischer Anwendung bewirkt Fortschritte auf vielen Gebieten, beispielsweise bei der Entwicklung und Anwendung von neuen Verfahren in der Medizin, der Bio- und Gentechnologie, der Neurowissenschaften, der Umwelt- und Energietechnologie, bei der Weiterentwicklung von Werkstoffen und Produktionsverfahren sowie der Nanotechnologie und der Informationstechnologie. Andererseits birgt die naturwissenschaftlich technische Entwicklung auch Risiken, die erkannt, bewertet und be- herrscht werden müssen. Hierzu ist Wissen aus den naturwissenschaftlichen Fächern nötig.

Naturwissenschaftliche Bildung ermöglicht dem Individuum eine aktive Teilhabe an gesellschaftlicher Kommunikation und Meinungsbildung über technische Entwicklung und naturwissenschaftliche Forschung und ist deshalb wesentlicher Bestandteil von Allgemeinbildung. Ziel natur- wissenschaftlicher Grundbildung ist es, Phänomene erfahrbar zu machen, die Sprache und Historie der Naturwissenschaften zu verstehen, ihre Ergebnisse zu kommunizieren sowie sich mit ihren spezifischen Methoden der Erkenntnisgewinnung und deren Grenzen auseinander zu setzen. Dazu gehört das theorie- und hypothesengeleitete naturwissenschaftliche Arbeiten, das eine analytische und rationale Betrachtung der Welt ermöglicht. Darüber hinaus bietet naturwissenschaftliche Grundbildung eine Orientierung für naturwissenschaftlich-technische Berufsfelder und schafft Grundlagen für anschlussfähiges, berufsbezogenes Lernen.

Die Physik stellt eine wesentliche Grundlage für das Verstehen natürlicher Phänomene und für die Erklärung und Beurteilung technischer Systeme und Entwicklungen dar. Durch seine Inhalte und Methoden fördert der Physikunterricht für das Fach typische Herangehensweisen an Aufgaben und Probleme sowie die Entwicklung einer spezifischen Weltsicht.

Physik ermöglicht Weltbegegnung durch die Modellierung natürlicher und technischer Phänomene und die Vorhersage der Ergebnisse von Wirkungszusammenhängen. Dabei spielen sowohl die strukturierte und formalisierte Beschreibung von Phänomenen als auch die Erarbeitung ihrer wesentlichen physikalischen Eigenschaften und Parameter eine Rolle. Im Physikunterricht können die Schülerinnen und Schüler vielfältige Anlässe finden, die physikalische Modellierung natürlicher Phänomene zur Erklärung zu nutzen.

Somit wird im Physikunterricht eine Grundlage für die Auseinanderset- zung der jungen Menschen mit naturwissenschaftlichen Themen und ihren gesellschaftlichen Zusammenhängen gelegt.

Zudem leistet er einen Beitrag zu anderen Fächern und zur Vorbereitung auf technische Berufe bzw. weiterführende Bildungsgänge und ermöglicht damit ein anschlussfähiges Orientierungswissen.

4.2 Kompetenzbereiche des Faches Physik

Mit dem Erwerb des Mittleren Schulabschlusses verfügen die Schülerin- nen und Schüler über naturwissenschaftliche Kompetenzen im Allgemeinen sowie physikalische Kompetenzen im Besonderen. Kompetenzen sind nach Weinert "die bei Individuen verfügbaren oder durch sie erlernbaren kognitiven Fähigkeiten und Fertigkeiten, um bestimmte Probleme zu lösen, sowie die damit verbundenen motivationalen, volitionalen und sozialen Bereitschaften und Fähigkeiten, um die Problemlösungen in variablen Situationen erfolgreich und verantwortungsvoll nutzen zu können".

Die in vier Kompetenzbereichen festgelegten Standards beschreiben die notwendige physikalische Grundbildung. Die im Kompetenzbereich Fachwissen vorgenommene vertikale Vernetzung durch die übergeordneten vier Basiskonzepte Materie, Wechselwirkung, System und Energie soll den Schülerinnen und Schülern kumulatives Lernen erleichtern. Zu- gleich wird auf Basis des Fachwissens der Kompetenzerwerb in den Be- reichen Erkenntnisgewinnung, Kommunikation und Bewerten ermög- licht und das Fachwissen in gesellschaftlichen und alltagsrelevanten Kontexten angewandt. Darüber hinaus bieten die Kompetenzen Anknüpfungspunkte für fachübergreifendes und fächerverbindendes Arbeiten.

Kompetenzbereiche im Fach Physik

Fachwissen	Physikalische Phänomene, Begriffe, Prinzipien, Fakten,
	Gesetzmäßigkeiten kennen und Basiskonzepten zuordnen
Erkenntnisgewinnung	Experimentelle und andere Untersuchungsmethoden sowie
	Modelle nutzen
Kommunikation	Informationen sach- und fachbezogen er- schließen und
	austauschen
Bewertung	Physikalische Sachverhalte in verschiedenen
	Kontexten erkennen und bewerten

Schülerinnen und Schüler mit einem Mittleren Schulabschluss müssen im Fach Physik Kompetenzen erworben haben, die neben den Fachinhalten auch die Handlungsdimension berücksichtigen:

 Die drei Naturwissenschaften bilden die inhaltliche Dimension durch Basiskonzepte ab. Sie begünstigen kumulatives, kontextbezogenes Lernen. Sie systematisieren und strukturieren Inhalte so, dass der Erwerb eines grundlegenden, vernetzten Wissens erleichtert wird. Die inhaltliche Dimension umfasst übergreifende, inhaltlich begründete Prinzipien und Erkenntnis

- leitende Ideen, mit denen Phänomene physikalisch beschrieben und geordnet werden.
- Die Handlungsdimension bezieht sich auf grundlegende Elemente der naturwissenschaftlichen Erkenntnisgewinnung, also auf experimentelles und theoretisches Arbeiten, auf Kommunikation und auf die Anwendung und Bewertung physikalischer Sachverhalte in fachlichen und gesellschaftlichen Kontexten.

Diese beiden Dimensionen physikalischen Arbeitens ermöglichen es den Schülerinnen und Schülern, vielfältige Kompetenzen zu erwerben, die ihnen helfen, die natürliche und kulturelle Welt zu verstehen und zu erklären. Die Inhaltsdimension wird überwiegend im Kompetenzbereich Fachwissen dargestellt, die Handlungsdimension in den Kompetenzbereichen Erkenntnisgewinnung, Kommunikation und Bewertung. Inhalts- und handlungsbezogene Kompetenzen können nur gemeinsam und in Kontexten erworben werden. Sie beschreiben Ergebnisse des Lernens, geben aber keine Unterrichtsmethoden oder -strategien vor.

4.3 Fachwissen

Physikalische Phänomene, Begriffe, Prinzipien, Fakten, Gesetzmäßigkeiten kennen und Basiskonzepten zuordnen

Physikalisches Fachwissen, wie es durch die vier Basiskonzepte charakterisiert wird, beinhaltet Wissen über Phänomene, Begriffe, Bilder, Modelle und deren Gültigkeitsbereiche sowie über funktionale Zusammenhänge und Strukturen. Als strukturierter Wissensbestand bildet das Fachwissen die Basis zur Bearbeitung physikalischer Probleme und Aufgaben.

Das Verständnis von Zusammenhängen, Konzepten und Modellen sowie deren Nutzung zur weiteren Erkenntnisgewinnung und zur Diskussion bzw. zur Lösung offener, kontextbezogener Aufgabenstellungen ist Teil einer anspruchsvollen Problembearbeitung. Im Folgenden werden die vier Basiskonzepte näher ausgeführt und Beispiele für mögliche Konkretisierungen angegeben.

1. Materie	Beispiele
Körper können verschiedene Aggregatzustände	Form und Volumen von Körpern
annehmen. Diese können sich durch äußere	
Einwirkungen ändern.	
Körper bestehen aus Teilchen.	Teilchenmodell, Brownsche Bewegung
Materie ist strukturiert.	Atome, Moleküle, Kristalle

2. Wechselwirkung	Beispiele
Wenn Körper aufeinander einwirken, kann eine	Kraftwirkungen, Trägheitsgesetz,
Verformung oder eine Änderung der	Wechselwirkungsgesetz, Impuls
Bewegungszustände der Körper auftreten.	
Körper können durch Felder aufeinander	Kräfte zwischen Ladungen, Schwerkraft, Kräfte
einwirken.	zwischen Magneten
Strahlung kann mit Materie wechselwirken,	Reflexion, Brechung, Totalreflexion, Farben,
dabei können sich Strahlung und Materie ver-	Treibhauseffekt, globale Erwärmung,
ändern.	ionisierende Strahlung

3. System	Beispiele
Stabile Zustände sind Systeme im	Kräftegleichgewicht, Druckgleichgewicht,
Gleichgewicht.	thermisches Gleichgewicht
Gestörte Gleichgewichte können Ströme und	Druck-, Temperatur- bzw.
Schwingungen hervorrufen.	Potenzialunterschiede und die verursachten
	Strömungen
Ströme benötigen einen Antrieb (Ursache) und	Elektrischer Stromkreis, thermische Ströme
können durch Widerstände in ihrer Stärke	
beeinflusst werden.	

4. Energie	Beispiele
Nutzbare Energie kann aus erschöpfbaren und	fossile Brennstoffe, Wind- und
regenerativen Quellen gewonnen werden.	Sonnenenergie, Kernenergie
Für den Transport und bei der Nutzung von	Generator, Motor, Transformator,
Energie kann ein Wechsel der Energieform bzw.	Wirkungsgrad, Entropie, Abwärme,
des Energieträgers stattfinden. Dabei kann nur	Energieentwertung
ein Teil der eingesetzten Energie genutzt	
werden.	
Die Gesamtheit der Energien bleibt konstant.	Pumpspeicherwerk, Akkumulator,
Bei Körpern unterschiedlicher Temperatur	Wärmepumpe (Kühlschrank)
findet ein Energiefluss von alleine nur von	Wärmeleitung, Strahlung,
höherer zu niedrigerer Temperatur statt.	

4.4 Erkenntnisgewinnung

Experimentelle und andere Untersuchungsmethoden sowie Modelle nutzen

Physikalische Erkenntnisgewinnung ist ein Prozess, der durch folgende Tätigkeiten beschrieben werden kann:

Wahrnehmen	Beobachten und Beschreiben eines Phänomens, Erkennen einer
	Problemstellung, Vergegenwärtigen der Wissensbasis
Ordnen	Zurückführen auf und Einordnen in Bekanntes, Systematisieren
Erklären	Modellieren von Realität, Aufstellen von Hypothesen
Prüfen	Experimentieren, Auswerten, Beurteilen, kritisches Re- flektieren
	von Hypothesen
Modelle bilden	Idealisieren, Beschreiben von Zusammenhängen, Verall-
	gemeinern, Abstrahieren, Begriffe bilden, Formalisieren,
	Aufstellen einfacher Theorien, Transferieren

Eingebettet in den Prozess physikalischer Erkenntnisgewinnung sind das Experimentieren und das Entwickeln von Fragestellungen wesentliche Bestandteile physikalischen Arbeitens. In jedem Erkenntnisprozess wird auf bereits vorhandenes Wissen zurückgegriffen.

4.5 Kommunikation

Informationen sach- und fachbezogen erschließen und austauschen

Die Fähigkeit zu adressatengerechter und sachbezogener Kommunikation ist ein wesentlicher Bestandteil physikalischer Grundbildung.

Dazu ist es notwendig, über Kenntnisse und Techniken zu verfügen, die es ermöglichen, sich die benötigte Wissensbasis eigenständig zu erschließen. Dazu gehören das angemessene Verstehen von Fachtexten, Graphiken und Tabellen sowie der Umgang mit Informationsmedien und das Dokumentieren des in Experimenten oder Recherchen gewonnenen Wissens.

Zur Kommunikation sind eine angemessene Sprech- und Schreibfähigkeit in der Alltags- und der Fachsprache, das Beherrschen der Regeln der Diskussion und moderne Methoden und Techniken der Präsentation erforderlich. Kommunikation setzt die Bereitschaft und die Fähigkeit voraus, eigenes Wissen, eigene Ideen und Vorstellungen in die Diskussion einzubringen und zu entwickeln, den Kommunikationspartnern mit Ver- trauen zu begegnen und ihre Persönlichkeit zu respektieren sowie einen Einblick in den eigenen Kenntnisstand zu gewähren.

4.6 Bewertung

Physikalische Sachverhalte in verschiedenen Kontexten erkennen und bewerten

Das Heranziehen physikalischer Denkmethoden und Erkenntnisse zur Erläuterung, zum Verständnis und zur Bewertung physikalisch-, technischer und gesellschaftlicher Entscheidungen ist Teil einer zeitgemäßen Allgemeinbildung. Hierzu ist es wichtig, zwischen physikalischen, gesellschaftlichen und politischen Komponenten einer Bewertung zu unterscheiden. Neben der Fähigkeit zur Differenzierung nach physikalisch be- legten, hypothetischen oder nicht naturwissenschaftlichen Aussagen in Texten und Darstellungen ist es auch notwendig, die Grenzen naturwissenschaftlicher Sichtweisen zu kennen.

4.7 Standards für die Kompetenzbereiche des Faches Physik

Im Folgenden werden für die vier Kompetenzbereiche Regelstandards formuliert, die von Schülerinnen und Schülern mit Erreichen des Mittleren Schulabschlusses zu erwerben sind. Eine Zuordnung konkreter Inhalte erfolgt exemplarisch in den Aufgabenbeispielen. Die Standards sind nach den im Kapitel 2 beschriebenen Kompetenzbereichen geordnet.

Standards für den Kompetenzbereich Fachwissen Physikalische Phänomene, Begriffe, Prinzipien, Fakten, Gesetzmäßigkeiten kennen und Basiskonzepten zuordnen

Die Schülerinnen und Schüler . . .

F 1	verfügen über ein strukturiertes Basiswissen auf der Grundlage der Basiskonzepte,
F 2	geben ihre Kenntnisse über physikalische Grundprinzipien, Größenordnungen,
	Messvorschriften, Naturkonstanten sowie einfache physikalische Gesetze wieder,
F 3	nutzen diese Kenntnisse zur Lösung von Aufgaben und Problemen,
F 4	wenden diese Kenntnisse in verschiedenen Kontexten an,
F 5	ziehen Analogien zum Lösen von Aufgaben und Problemen heran.

Standards für den Kompetenzbereich Erkenntnisgewinnung Experimentelle und andere Untersuchungsmethoden sowie Modelle nutzen

Die Schülerinnen und Schüler . . .

E 1	beschreiben Phänomene und führen sie auf bekannte physikalische Zusammenhänge zurück,
E 2	wählen Daten und Informationen aus verschiedenen Quellen zur Bearbeitung von Aufgaben und Problemen aus, prüfen sie auf Relevanz und ordnen sie,
E 3	verwenden Analogien und Modellvorstellungen zur Wissensgenerierung,
E 4	wenden einfache Formen der Mathematisierung an,
E 5	nehmen einfache Idealisierungen vor,
E 6	stellen an einfachen Beispielen Hypothesen auf,
E 7	führen einfache Experimente nach Anleitung durch und werten sie aus,
E 8	planen einfache Experimente, führen sie durch und dokumentieren die Ergebnisse,
E 9	werten gewonnene Daten aus, ggf. auch durch einfache Mathematisierungen,
E 10	beurteilen die Gültigkeit empirischer Ergebnisse und deren Verallgemeinerung.

Standards für den Kompetenzbereich Kommunikation Informationen sach- und fachbezogen erschließen und austauschen

Die Schülerinnen und Schüler . . .

K 1	tauschen sich über physikalische Erkenntnisse und deren Anwendungen unter angemessener Verwendung der Fachsprache und fachtypischer Darstellungen aus,
K 2	unterscheiden zwischen alltagssprachlicher und fachsprachlicher Beschreibung von
	Phänomenen,
K 3	recherchieren in unterschiedlichen Quellen,
K 4	beschreiben den Aufbau einfacher technischer Geräte und deren Wirkungsweise,
K 5	dokumentieren die Ergebnisse ihrer Arbeit,
K 6	präsentieren die Ergebnisse ihrer Arbeit adressatengerecht,
K 7	diskutieren Arbeitsergebnisse und Sachverhalte unter physikalischen Gesichtspunkten

Standards für den Kompetenzbereich Bewertung

Physikalische Sachverhalte in verschiedenen Kontexten erkennen und bewerten

Die Schülerinnen und Schüler . . .

B 1	zeigen an einfachen Beispielen die Chancen und Grenzen physikalischer Sichtweisen bei inner- und außerfachlichen Kontexten auf,
B 2	vergleichen und bewerten alternative technische Lösungen auch unter Berücksichtung physikalischer, ökonomischer, sozialer und ökologischer Aspekte,
В 3	nutzen physikalisches Wissen zum Bewerten von Risiken und Sicherheitsmaßnahmen bei Experimenten, im Alltag und bei modernen Technologien,
B 4	benennen Auswirkungen physikalischer Erkenntnisse in historischen und gesellschaftlichen Zusammenhängen.

Zielsetzung dieses Kapitels ist die Veranschaulichung der Standards basierend auf den vier Kompetenzbereichen, sowie die Verdeutlichung eines Anspruchsniveaus.

Da noch keine empirisch abgesicherten Kompetenzstufenmodelle vorliegen, wird zunächst zur Einschätzung der in den Aufgabenbeispielen gestellten Anforderungen auf drei Bereiche zurückgegriffen, die sich in ihrer Beschreibung an den Einheitlichen Prüfungsanforderungen in der Abiturprüfung (EPA) orientieren. Dabei gilt, dass die Anforderungsbereiche nicht Ausprägungen oder Niveaustufen einer Kompetenz sind. Es handelt sich vielmehr um Merkmale von Aufgaben, die verschiedene Schwierigkeitsgrade innerhalb ein und derselben Kompetenz abbilden können. Die nachfolgenden Formulierungen zeigen deshalb zunächst charakterisierende Kriterien zur Einordnung in einen der Anforderungs- bereiche auf.

		Anforderungsbereich		
		1	II	III
	Fachwissen	Wissen wiedergeben Fakten und einfache physikalische Sachverhalte reproduzieren.	Wissen anwenden Physikalisches Wissen in einfachen Kontexten anwenden, einfache Sach- verhalte identifizieren und nutzen, Analogien benennen.	Wissen transferieren und verknüpfen Wissen auf teilweise unbekannte Kontexte anwenden, geeignete Sachverhalte auswählen.
Kompetenzbereich	Erkenntnisgewinnung	Fachmethoden beschreiben Physikalische Arbeitsweisen, insb. experimentelle, nachvollziehen bzw. beschreiben.	Fachmethoden nutzen Strategien zur Lösung von Aufgaben nutzen, einfache Experimente planen und durchführen, Wissen nach Anleitung erschließen.	Fachmethoden problembezogen aus- wählen und anwenden Unterschiedliche Fachmethoden, auch einfaches Experimentieren und Mathematisieren, kombiniert und zielgerichtet aus- wählen und einsetzen, Wissen selbstständig erwerben.

		Anforderungsbereich				
		I	II	III		
		Mit vorgegebenen Darstellungsformen arbeiten	Geeignete Darstellungsformen nutzen	Darstellungsformen selbständig aus- wählen und nutzen		
ich	Kommunikation	Einfache Sachver- halte in Wort und Schrift oder einer anderen vorgegebenen Form unter Anleitung darstellen, sachbezogene Fragen stellen.	Sachverhalte fach- sprachlich und strukturiert darstellen, auf Beiträge anderer sachgerecht ein- gehen,	Darstellungsformen sach- und adressatengerecht auswählen, anwenden und reflektieren, auf angemessenem Niveau begrenzte Themen diskutieren.		
zbere	Komr	stelleri.	Aussagen sachlich begründen.			
Kompetenzbereich		Vorgegebene Bewertungen nach- vollziehen	Vorgegebene Bewertungen beurteilen und kommentieren	Eigene Bewertun- gen vornehmen		
Ž	Bewertung	Auswirkungen physikalischer Erkenntnisse benennen, einfache, auch	Den Aspektcharakter physikalischer Betrachtungen auf- zeigen,	Die Bedeutung physikalischer Kenntnisse beurteilen, physikalische Erkenntnisse als Basis für die Bewertung		
	_	technische Kontexte aus physikalischer Sicht erläutern.	zwischen physikalischen und anderen Komponenten einer Bewertung unter- scheiden.	eines Sachverhalts nutzen, Phänomene in einen physikalischen Kontext einordnen.		

5. Eingangsvoraussetzungen für die Qualifikationsphase

Der Physikunterricht in der Qualifikationsphase setzt Kenntnisse aus folgenden Themenbereichen voraus:

- Mechanik
- Optik
- Elektrizitätslehre und Magnetismus
- Atom- und Kernphysik

Die Kenntnisse werden entsprechend den EPA-Schwerpunkten inder Qualifikationsphase systematisch weiter entwickelt.

Sachkompetenz

Das für die Entwicklung von Sachkompetenz erforderliche Fachwissen bezieht sich schwerpunktmäßig auf die eingangs genannten Themenbereiche.

Themenbereich	Die Schülerinnen und Schüler können				
Mechanik	mit der physikalischen Größe "Kraft" und dem hookeschen Gesetz sicher				
	umgehen				
	mit Grundbegriffen und Kenngrößen der Kinematik sicher umgehen				
	mit dem Energiebegriff und dem Energieerhaltungssatz sicher umgehen				
	mit der physikalischen Größe "Impuls" und dem Impulserhaltungssatz				
	sicher umgehen				
Optik	das Strahlenmodell des Lichtes auf die Brechung und Reflexion				
	anwenden und mit diesem Modell optische Erscheinungen beschreiben				
	und erklären				
	Strahlenverläufe an ausgewählten durchsichtigen Körpern konstruieren				
	und die Bildentstehung an dünnen Sammellinsen konstruieren und				
	berechnen				
Elektrizitätslehre und mit den physikalischen Größen "Strom", Spannung" und "ohm					
Magnetismus	Widerstand" sicher umgehen				
magnotioniae	das ohmsche Gesetz erläutern				
	den Feldbegriff anhand des Magnetfeldes von Dauer- und				
	Elektromagneten erläutern				
	Feldlinienbilder von Magneten, stromdurchflossenen Leitern und Spulen				
	sicher interpretieren				
	bewegte Ladung als Ursache für Magnetfelder identifizieren				
Atom- und	die Eigenschaften radioaktiver Strahlen nennen und effektive				
Kernphysik	Nachweisverfahren beschreiben				
	den Aufbau von Atomkernen angeben und die Existenz von Isotopen				
	erklären				

Methodenkompetenz	
Methode	Die Schülerinnen und Schüler können
Naturwissenschaftliche	physikalische Beobachtungen, Untersuchungen und Experimente planen,
und fachspezifische	durchführen, protokollieren und auswerten sowie Fehlerbetrachtungen
Methoden	vornehmen
	experimentelle Methoden anwenden
	physikalische Fragestellungen entwickeln
	Hypothesen bilden
	Hypothesen experimentell überprüfen
	Ergebnisse im Hinblick auf die Fragestellung prüfen
	Einfache physikalische Modelle für Erkenntnisprozesse nutzen
	Merkmale und Grenzen vonModellen sowie die Bedeutung ihrer
	Weiterentwicklung erläutern
	Modellvorstellungen entwickeln und Modelle anwenden
	physikalische Sachverhalte beschreiben, vergleichen und klassifizieren
	sowie Fachtermini definieren
	kausale Beziehungen erkennen und physikalische Sachverhalte
	begründen und interpretieren

Themenbereich	Die Schülerinnen und Schüler können				
Kommunikation	Informationen sachkritisch analysieren, strukturieren und				
	adressatengerecht präsentieren				
	Informationen aus Texten, Schemata, Grafiken, symbolischen				
	Darstellungen, Gleichungen, Diagrammen und Tabellen in andere				
	Darstellungsformen umwandeln				
	Methoden und Ergebnisse physikalischer Beobachtungen, Untersuchungen				
	und Experimente in geeigneter Form darstellen und damit argumentieren				
	zwischen Alltags- und Fachsprache unterscheiden und physikalisch-				
	naturwissenschaftliche Fachbegriffe sachgerecht anwenden				
Reflexion	physikalische Sachverhalte in angemessenen Kontexten erkennen				
	Entscheidungen, Maßnahmen und Verhaltensweisen auf der Grundlage				
	von physikalischen Fachkenntnissen unter Beachtung verschiedener				
	Perspektiven ableiten und bewerten				
	Bedeutung, Tragweite und Grenzen physikalischer Erkenntnisse, Methoden				
	einschließlich deren Anwendungen bewerten.				
Selbst- und	selbstständig und situationsbezogen Lernstrategien und Arbeitstechniken				
Sozialkompetenz	anwenden sowie eigene Lernwege reflektieren und Lernergebnisse				
	bewerten				
	das eigene Arbeits- und Sozialverhalten sowie das anderer Personen				
	einschätzen.				

6. Spezielle Lernziele und Lerninhalte

Klassenstufe 7

Der Physikunterricht in der Klassenstufe 7 ist Anfangsunterricht und wird so gestaltet, dass er Interessen und Neigungen der Schüler weckt und fördert.

Die Schüler werden bereits im Alltag mit Begriffen aus der Physik konfrontiert, die einer fachwissenschaftlichen Klärung bedürfen. Die Anknüpfung an Beobachtungen, die sie in der Natur, in der Technikwelt oder an Spielzeugen in ihrer besonderen Erfahrungswelt gemacht haben, ist Voraussetzung für einen interessanten und problemorientierten Unterricht und Ausgangspunkt zum Erwerb physikalischen Wissens.

In der Klassenstufe 7 werden mit dem Beobachten und Experimentieren wesentliche Denk- und Arbeitsweisen der Physik eingeführt.

Die fachspezifische Leitlinie **Erkunden von Naturgesetzen** beginnt bereits in den Einführungsstunden und wird im Stoffgebiet Optik sofort weitergeführt. In diesem Stoffgebiet werden die Schüler zum Beobachten und Erklären von Erscheinungen und Vorgängen angeregt und erkunden Gesetze der Physik. Dieses Stoffgebiet ist geeignet Schüler zu motivieren, Erfahrungen zu sammeln, z. B. durch selbst gebastelte Modelle. In der Optik wird den Schülern erstmals der Begriff des physikalischen Modells nahe gebracht, das später durchgängig als ein wichtiges Erkenntnismittel in der Physik benutzt wird, um Vorgänge und Erscheinungen zu beschreiben und zu erklären.

An geeigneten Stoffgebieten werden Schülerexperimente während des Unterrichts oder als Hausexperimente genutzt, um über zunächst angeleitetes Handeln das Planen und Durchführen von Experimenten zu üben.

Am Beispiel der Größen Dichte und Geschwindigkeit erlernen die Schüler erstmals, wie Größen entsprechend ihrer begrifflichen Inhalte definiert werden. Sie erlernen schrittweise den Umgang mit Größen und Größengleichungen und erfassen die in ihnen enthaltenen Aussagen. Am Beispiel der Größe Geschwindigkeit werden sie mit dem Umgang mit Diagrammen im Physikunterricht vertraut gemacht. Hier setzt die fachspezifische Leitlinie **Mathematische Methoden der Physik** ein. Eine enge Zusammenarbeit mit dem Fach Mathematik auch in den nachfolgenden Klassenstufen ist dabei unbedingt erforderlich.

Die fachspezifische Leitlinie **Teilchen** wird in der Mechanik vorbereitet und tritt im Stoffgebiet Aufbau der Stoffe besonders hervor.

Die fachspezifische Leitlinie **Energie** startet im gleichnamigen Stoffgebiet. Hier beginnen die Schüler im Unterricht physikalische Vorgänge aus energetischer Sicht zu beurteilen.

Klassenstufe 8

Die Schüler erweitern ihre Fähigkeiten zum Arbeiten mit Diagrammen. Sie festigen ihr Wissen über die Bezüge zwischen Diagrammen einerseits und entsprechenden Gesetzen und Größengleichungen andererseits. Damit wird die Leitlinie **Mathematische Methoden der Physik** fortgeführt. Auf eine enge Zusammenarbeit mit dem Fach Mathematik ist zu achten.

In der Wärmelehre können die Schüler Erscheinungen und Vorgänge mit ihrem Wissen über Teilcheneigenschaften erklären. Hier treten die Leitlinien **Teilchen und Energie** besonders in Erscheinung.

Erstmals wird in der Elektrizitätslehre der Feldbegriff genutzt, um die Bewegung elektrischer Ladungen zu begründen. Damit setzt die Leitlinie **Felder** ein.

Die Leitlinie Erkunden von Naturgesetzen wird kontinuierlich weitergeführt.

Die Schüler erlernen das Entwerfen von Schaltplänen und werden an das selbstständige Planen, Durchführen und Auswerten von Experimenten herangeführt.

Beim Experimentieren wird sowohl die Einzelverantwortung als auch die Zusammenarbeit in der Gruppe entwickelt und gefördert.

Klassenstufe 9

In den Klassenstufen 9 und 10 werden alle fachspezifischen Leitlinien werden fortgeführt. Auf die enge Zusammenarbeit mit dem Fach Mathematik wird verwiesen.

Der physikalische Feldbegriff wird durch die Behandlung des magnetischen Feldes und der elektromagnetischen Induktion erweitert.

Das Feldlinienmodell wird genutzt, um physikalische Erscheinungen und Vorgänge zu erklären.

Die Vorstellungen der Schüler über elektrische Leitungsvorgänge werden wesentlich vertieft.

In der Mechanik werden die Begriffe Bewegung, Geschwindigkeit und Beschleunigung präzisiert. Mit der Erarbeitung und Anwendung grundlegender Gesetze der Kinematik ergeben sich für die Schüler erhöhte Anforderungen beim Lösen von Aufgaben.

Sie werden befähigt, komplexere mathematisch-physikalische Aufgaben zunehmend sicher zu lösen sowie physikalische Größengleichungen und Diagramme zu interpretieren.

Klassenstufe 10

Die besondere Bedeutung der Klassenstufe 10 liegt in der Vorbereitung der Qualifikationsphase in allen Kompetenzbereichen.

In der Klassenstufe 10 stehen drei Wochenstunden zur Verfügung.

Die Mechanik der Punktmasse wird in Klassenstufe 10 vorläufig abgeschlossen. Sie ist eine wesentliche Grundlage für einige Stoffgebiete in der Qualifikationsphase.

Schüler, die später das Fach Physik nicht weiterführen, gewinnen einen abschließenden Überblick zur klassischen Mechanik und einen Überblick zur Kernphysik.

Die unter Ziele und Aufgaben des Physikunterrichts in der Oberstufe zu erreichenden Kompetenzen werden, anknüpfend an den bisher erreichten Stand, in der Klassenstufe 10 bereits auf einem entsprechend hohem Niveau entwickelt.

Alle fachspezifischen Leitlinien dienen dabei zur Orientierung. Auf die enge Zusammenarbeit mit dem Fach Mathematik ist zu achten.

7. Themenübersicht für die Klassenstufen 7 bis 10

Klassenstufe 7	rsicht für die Klassenstufen 7 bis 10 7.1. Einführung in die Physik	2 h
	7.2 Optik	18 h
	7.2.1 Ausbreitung des Lichtes	4
	7.2.2 Reflexion des Lichtes	2
	7.2.3 Brechung des Lichtes	6
	7.2.4 Bildentstehung an Linsen	
	7.3. Mechanik	31 h
	7.3.1 Masse und Volumen von Körpern	5
	7.3.2 Dichte von Stoffen	2
	7.3.3 Beschreibung der Bewegung von Körpern	8
	7.3.4 Kraft	12
	7.3.5 Mechanische Arbeit und Leistung	4
	7.4. Aufbau der Stoffe	3 h
	7.5. Energie in Natur und Technik	6 h
Klassenstufe 8	8.1 Elektrizitätslehre	37 h
	8.1.1 Elektrische Ladungen und elektrische Felder	3
	8.1.2 Elektrischer Stromkreis	12
	8.1.3 Elektrische Spannung	8
	8.1.4 Elektrischer Widerstand	10
	8.1.5 Elektrische Energie und Leistung	4
	8.2 Wärmelehre	23 h
	8.2.1 Temperatur	2
	8.2.2 Wärme	8
	8.2.3 Verhalten der Körper bei Temperaturänderung	5
	8.2.4 Druck	8
Klassenstufe 9	9.1 Elektrizitätslehre	40 h
	9.1.1 Magnetfeld	10
	9.1.2 Elektromagnetische Induktion	14
	9.1.3 Elektrische Leitungsvorgänge	16
	9.2 Mechanik	20 h
	9.2.1 Gleichförmige geradlinige Bewegung	4
	9.2.2 Gleichmäßig beschleunigte geradlinige Bewegung	
	9.2.3 Überlagerung geradliniger Bewegungen	9
Klassenstufe 10	10.1 Mechanik	40 h
	10.1.1 Kraft	9
	10.1.2 Newtonsches Axiome	8
	10.1.3 Mechanische Arbeit, mechanische Energie	8
	10.1.4 Impuls und Stoß	7
	10.1.5 Gleichförmige Kreisbewegung	5
	10.1.6 Gravitationsgesetz	3
	10.2 Schwingungen und Wellen	20 h
	10.2.1 Mechanische Schwingungen	10
	10.2.2 Mechanische Wellen	10
	10.3 Kernphysik	15 h
	10.3.1 Atomkerne, Radioaktivität, Kernumwandlungen	15
	· · · · · · · · · · · · · · · · · · ·	_

8. Benutzerhinweise

Der vorliegende Lehrplan orientiert sich am Bundesland Thüringen 2012.

Die den Themen zugeordneten Zeitrichtwerte sind nicht verbindlich. Sie geben eine Orientierung über Umfang und Intensität für die Behandlung der Themenbereiche. Bei den Zeitrichtwerten in den Klassenstufen 7 bis 9 jeweils zwei, wurden in Klassenstufe 10 Wochenunterrichtsstunden zugrunde gelegt. Darüber hinaus zur Verfügung stehende Zeit wird als pädagogischer Freiraum im Sinne der Zielstellungen des **Physikunterrichts** Kompetenzentwicklung sinnvoll genutzt. Dabei kommt der Durchführung von weiteren Schülerexperimenten und dem physikalischen Praktikum besondere Bedeutung zu.

Die Reihenfolge der Behandlung der Stoffgebiete innerhalb der einzelnen Klassenstufen 7 bis 10 kann der Lehrer in Abstimmung mit anderen Fächern ändern.

Folgende Abkürzungen werden im Lehrplan werden verwendet:

SE: Schülerexperiment

DE: Demonstrationsexperiment

SV: Schülervortrag **LV:** Lehrervortrag

Themen/Inhalte Die Nummerierung schreibt keine verbindliche Abfolge vor.

Kompetenzen Leitideen (= inhaltsbezogene physikalische Kompetenzen) und

prozessbezogene Kompetenzen (= allgemeine physikalische

Kompetenzen)

Methoden/Hinweise Methoden, fachübergreifende Themen, Medieneinsatz, sonstige

Bemerkungen

Schulspezifisches Schulspezifische Vertiefungen und Erweiterungen.

Zeit Richtwert der Unterrichtszeit in Wochen basierend auf 30 Wochen

pro Jahr und 2 Unterrichtsstunden pro Woche

Schulcurriculum Physik

Klassenstufe 7 (60 Stunden)

7.1. Einführung in die Physik (2 h)

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Physik im Alltag	können die Teilgebiete der Physik nennen	2	Beispiele aus Biologie,	Physikalische
Physik als Naturwissenschaft	• erläutern, was Physik ist und was sie kann		Mathematik und Chemie	Spielzeuge
	, ,		hinzuziehen	Physikalische
				Phänomene

7.2 Optik (20 h)

7.2.1 Ausbreitung des Lichtes (4 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Lichtstrahl	 beschreiben das Modell Lichtstrahl und können es anwenden nennen die grundlegenden Ausbreitungs- eigenschaften des Lichtes, z. B. geradlinige Ausbreitung des Lichtes unterscheiden Lichtquellen und beleuchtete Körper 	2	Arbeit mit Modellen DE: Ausbreitung des Lichts	Farbaddition, Farbsubtraktion → Geometrie
Schatten	 erläutern wie Schatten, Kernschatten, Halbschatten entstehen konstruieren Randstrahlen der Schatten können Naturerscheinungen beschreiben und zu erklären (Sonnenfinsternis, Mondfinsternis) 	2	SE: Schatten	Mondbeobachtungen Sonnenbeobachtungen Besuch im Pekinger Planetarium → Astronomie

Real- und Hauptschule

7.2.2 Reflexion des Lichtes (2 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Verhaltens des Lichtes beim Auftreffen auf die Oberfläche Iichtundurchlässiger Körper	 können Untersuchungen der Reflexion am ebenen Spiegel durchführen formulieren das Reflexionsgesetz haben die Fähigkeit, Strahlenverläufe bei der Reflexion zu zeichnen sind in der Lage, Winkeln zu messen kennen den Unterschied zwischen regulärer und diffuser Reflexion können Anwendungen beschreiben 	2	Geometrische Grundbegriffe aus der Mathematik einbeziehen SE: Reflexion des Lichts SE: Diffuse Reflexion	Reflektoren im Straßenverkehr Gekrümmte Spiegel

7.2.3 Brechung des Lichtes (6 Stunden)

Inhalte Kompetenzen Zeit Methoden Schulspezifische

	Die Schülerinnen und Schüler	h		Ergänzungen
Brechung	beschreiben das Verhaltens des Lichtes beim	3	SE: Brechung	Entstehung des
	 Auftreffen auf die Oberfläche lichtdurchlässiger Körper beschreiben die Brechung bei den Übergängen Luft-Wasser, Luft-Glas können die Umkehrbarkeit des Lichtweges anwenden 			Regenbogens
	 formulieren qualitativ das Brechungsgesetz haben die Fähigkeit, Strahlenverläufe bei der Brechung sachgemäß zu zeichnen 			
Brechung am Prisma	 haben die Fähigkeit, Anwendungen der Brechung zu beschreiben und deren Wir- kungsweise zu erklären beschreiben die Lichtzerlegung am Prisma 	2	SE oder DE: Zerlegung am Prisma	Einblick in die spektrale Zerlegung des Lichtes Sonnenspektrum
Besonderheiten der Brechung	 können Fehleinschätzungen der Tiefe von Gewässern erklären beschreiben das Phänomen der Totalreflexion 	1	SE: div. Experimente zur Lichtbrechung	Informationsübertragung mit Lichtleitkabel Luftspiegelungen

Real- und Hauptschule

7.2.4 Bildentstehung an Linsen (6 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Linsenarten	unterscheiden Sammellinsen und Zerstreuungslinsen	1		Brillengläser Sinnesorgane → Biologie
Strahlengang durch optische Linsen	 erläutern die Brechung des Lichtes an Linsen, nennen die Begriffe: optische Achse, Brennpunkt, Parallelstrahl, Brennpunktstrahl, Mittelpunktstrahl haben die Fähigkeit, Strahlenverläufe bei der Bildentstehung an Sammellinsen zu konstruieren 	3	DE und SE: Brechung an einer Linse Simulation mit Computer Experimentelles Erzeugen und Konstruieren reeller und virtueller Bilder	→ Mathematik
Optische Geräte	 haben die Fähigkeit, den Aufbau optischer Geräte zu beschreiben und deren Wirkungs- weise zu erklären erläutern die Lochkamera als optisches Instrument können die Wirkungsweise optischer Instrumente erklären (z. B. Fotoapparat, Projektionsgeräte, Auge, Lupe, Fernrohr, Mikroskop, Brillen) 	2	SE: Lochkamera (Hausexperiment)	Sehfehlerkorrekturen, Bezug zu Biologie Bau weiterer optischer Geräte (Periskop)

Real- und Hauptschule

7.3. Mechanik (29 h)
7.3.1 Masse und Volumen von Körpern (5 Stunden)

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
iiiiaite	Die Schülerinnen und Schüler	h	Wellouell	Ergänzungen
Physikalische Größen	 haben einen Einblick in das Wesen physikalischer Größen bekommen definieren die physikalische Größe Masse und Volumen 	1	Arbeit mit Größen	→ Mathematik
Volumen	 kennen die Größe Volumen haben die Fähigkeit, Volumina von festen und flüssigen Körpern experimentell zu ermitteln 	2	Arbeit mit Größen SE: Bestimmen des Volumens unregel- mäßiger fester Körper durch Verdrängung von Flüssigkeiten	→ Mathematik
Masse	 kennen die Größe Masse haben die Fähigkeit, die Masse von Körpern zu ermitteln 	2	Arbeit mit Größen SE: Bestimmung der Masse durch Wägung	

7.3.2 Dichte von Stoffen (2 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Dichte	 definieren die physikalische Größe Dichte kennen Körper mit gleichem Volumen und unterschiedlicher Masse, kennen Körper mit gleicher Masse und unterschiedlichem Volumen, haben die Fähigkeit, den Zusammenhang zwischen Masse und Volumen zu beschreiben haben die Fähigkeit, die Dichte von Stoffen experimentell zu bestimmen und zu berechnen 	2	Arbeit mit Größen SE: Bestimmen der Dichte	Mittlere Dichte der Sonne oder anderer Himmelskörper Hinweis auf Aräometer → Mathematik

7.3.3 Beschreibung der Bewegung von Körpern (8 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Bewegung	• erläutern den Begriff "Bewegung"	1		Bezugssysteme
Geschwindigkeit	 definieren Geschwindigkeit und ihre Einheit kennen die Formel zur Berechnung der Geschwindigkeit und können damit Geschwindigkeiten berechnen 	2	Arbeit mit Größen SE: Bestimmung von Geschwindigkeiten	
Durchschnitts- geschwindigkeit	 können Geschwindigkeiten bei der gleichförmigen geradlinigen Bewegung sowie Durchschnittsgeschwindigkeiten für nicht gleichförmige geradlinige Bewegungen bestimmen 	2	Arbeit mit Größen DE: Bestimmung von Durchschnitts- geschwindigkeiten	
Diagramme	 können Bewegungen im Weg-Zeit- Diagramm darstellen und unterscheiden typische Graphenverläufe erkennen und erläutern die in den Graphen enthaltenen Aussagen 	1	Bezug zum Mathematikunterricht	
Anwendungen von Bewegungen	können einfache Aufgaben zur Bewegung eines Körpers lösen	2		Gefahren im Straßenverkehr, Verantwortung der Verkehrsteilnehmer

7.3.4 Kraft (12 Stunden)

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
16. 6:	Die Schülerinnen und Schüler	h	A 1 11 11 0 11 0	Ergänzungen
Kraft	 nennen Kräfte in Natur und Technik können den Kraftbegriff vom Alltagsbegriff abgrenzen definieren die physikalische Größe Kraft beschreiben die Kraft als Wechselwirkungsgröße können Kräfte messen kennen den Federkraftmesser können Kräfte mit Pfeilen darstellen 	2	Arbeit mit Größen SE: Messen von Kräften	Expander Projekt: Sinken – Schweben – Steigen – Schwimmen
Kraftarten und Kraftwirkungen	erläutern die Gewichtskraft und ihre Ortsabhängigkeit unterscheiden plastische und elastische Verformungen erläutern"cm"o ¾ rkej g"Y ktmwpi "f gt"Mtch/gkpg Geschwindigkeitsänderung	2	SE: Verformungen	
Druck	• definieren die physikalische Größe Druck	1	Arbeit mit Größen	
Reibungskräfte	 beschreiben die Reibungskraft als bewegungshemmende Kraft haben die Fähigkeit, Reibungskräfte zu unterscheiden (Haft-, Gleit- und Rollreibung) kennen qualitativ die Abhängigkeit der Reibungskraft von der Beschaffenheit der Berührungsflächen und von der Gewichtskraft nennen Beispiele für erwünschte und unerwünschte Reibung 	2	SE: Abhängigkeit der Reibungskraft (Holzklötze) SV: Erwünschte und unerwünschte Reibung	Bremsen, Streuen im Winter Projekt: Reibungsvorgange in Natur und Technik
Hebel	 formulieren das Hebelgesetz untersuchen den Hebel im Gleichgewicht kennen den Unterschied zwischen einem einseitigen und zweiseitigen Hebel nennen Anwendungen des Hebels in Natur und Technik können einfache Berechnungen durchführen 	2	SE: Hebel	Projekt: Anwendungen eines Hebels Projekt: Kraftumformende Einrichtungen im Alltag Skelett, Muskulatur Spielen, Werfen, Stoßen, Gerätturnen, Zweikampfsportarten

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Weitere kraftumformende Einrichtungen	geben einen Überblick über Z Technische Anwendunge	Technische Anwendungen SE: Kraftumformende	Historische Betrachtungen	
	 erläutern die Rolle, den Flaschenzug und die geneigte Ebene als kraftumformende Einrichtung 		Einrichtungen	
Schwerpunkt eines Körpers	 können einen Überblick über den Schwerpunkt von Körpern geben erläutern Zusammenhang zwischen der Standfestigkeit und der Lage des Schwerpunktes 	1		Bezug zum Sportunterricht → Sport → Biologie

7.3.5 Mechanische Arbeit und Leistung (4 Stunden)

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Mechanische Arbeit	 können den Arbeitsbegriff vom Alltagsbegriff abgrenzen definieren die physikalische Größe Arbeit (Kraft konstant und in Wegrichtung) definieren die verschiedenen Einheiten vergleichen mechanische Arbeiten an praktischen Beispielen formulieren die Goldenen Regel der Mechanik und die Bedeutung der Goldenen Regel für den Transport von Lasten (z. B. geneigte Ebene) und wenden sie an geben einen Überblick über Arten der mechanischen Arbeit (Hubarbeit, Reibungsarbeit, Verformungsarbeit) 	2	Arbeit mit Größen	
Mechanische Leistung	 definieren die physikalische Größe der mechanische Leistung erläutern die Definition der mechanischen Leistung haben die Fähigkeit, die Kenntnisse über die mechanische Arbeit und Leistung anzuwenden 	2	Arbeit mit Größen	

7.4. Aufbau der Stoffe (3 h)

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Überblick über den Aufbau der Stoffe aus Teilchen und über die Kräfte zwischen ihnen	 kennen den Unterschied zwischen festen, flüssigen und gasförmigen Körpern 	3	Arbeit mit Modellen	
	 kennen die Begriffe Kohäsionskräfte, Adhäsionskräfte und können Beispiele für ihre Wirkungen nennen 			

7.5. Energie in Natur und Technik (6 h)

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Energie	 können den Energiebegriff vom Alltagsbegriff abgrenzen erläutern, dass Energie die Fähigkeit ist, mechanische Arbeit zu verrichten, Wärme abzugeben oder Licht auszusenden können einfache Berechnungen zur Energie am Beispiel der potenziellen Energie 	2	Arbeit mit Größen	
Wirkungsgrad	 nennen erwünschte und unerwünschte Energieumwandlungen und Energieentwertung definieren den Wirkungsgrad als Kennzeichen für die Güte einer Anlage zur Energieumwandlung diskutieren über den verantwortungsbewussten Umgang mit 	2	Arbeit mit Größen Technische Anwendungen	
Energieumwandlungen	nennen Energieformen und – übertragung sowie Energieträger	1		Erneuerbare/fossile Energieträger Projekt: Energiesparen
Energieerhaltungssatz	 kennen den Energieerhaltungssatz und können ihn auf einfache Beispiele anwenden 	1		Perpetuum mobile

Schulcurriculum Physik

Klasse 8 (60 Stunden)

8.1 Elektrizitätslehre (37 h)

8.1.1 Elektrische Ladungen und elektrische Felder (3 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Ruhende Ladungen und elektrische Felder	 nennen Beispiele für die Elektrizität in der Natur, erläutern den Begriff Ladungstrennung können Ladungsnachweise durchführen können Kräfte zwischen elektrischen Ladungen beschreiben nennen die Elementarladung können einen Ladungsausgleich beschreiben (Blitz, Blitzableiter) erläutern, dass das elektrisches Feld Träger von Energie ist beschreiben wichtige Feldformen und Feldlinienbilder 	3	Arbeit mit Modellen, Erkunden von Naturgesetzen SE: Ladungsnachweis durch ein Elektroskop DE: Feldlinien des elektrischen Feldes	→ Chemie Besuch des Technikmuseums in Peking

8.1.2 Elektrischer Stromkreis (12 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Bewegte Ladung	 erläutern die Modellvorstellung vom elektrischen Strom in metallischen Leitern können den Begriff des elektrischen Stromes auf die gerichtete Bewegung zurückführen 	3	Arbeit mit Modellen, Arbeit mit Größen DE: Stromfluss	→ Chemie
Stromarten	 nennen Beispiele für den Ladungsausgleich unterscheiden Gleich- und Wechselstrom 	1	DE: Oszillograph	
Wirkungen des Stroms	 erläutern die Lichtwirkung, Wärmewirkung, magnetische und chemische Wirkung des Stroms nennen Gefahren des elektrischen Stroms für lebende Organismen 	1	DE: Stromwirkungen Technische Anwendungen	Projekt: Stromwirkungen
Stromkreise	 geben einen Überblick über Stromkreise und haben die Fähigkeit, Stromkreise zu zeichnen und zu schalten kennen Bestandteile des Stromkreises und ihre Schaltzeichen kennen und zeichnen unverzweigte und v erzweigte Stromkreis 	2	SE: Aufbau von Stromkreisen mittels Glühlampen	
Stromstärke	 definieren die Stromstärke als Maß für die Anzahl der Elektronen, die sich in einer Sekunde durch einen Leiterquerschnitt bewegen kennen das Messgerät für die Stromstärke und die Schaltung des Messgerätes haben eine Größenvorstellungen über Stromstärken in der Praxis haben die Fähigkeit, Stromstärken im Gleichstromkreis zu messen 	2	Arbeit mit Größen SE: Stromstärkemessungen	Ablesen auf unterschiedlichen Strommessern Stromrichtige Schaltungen
Gesetze für die Stromstärke	formulieren die Gesetze für die Stromstärke im verzweigten und im unverzweigten Stromkreis	3	SE: Gesetze für die Stromstärke	Praktische Beispiele (z.B. Sicherung)

8.1.3 Elektrische Spannung (8 Stunden)

orno Eloktrioono opaniiang				
Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Spannung	 erläutern die Spannung als Ursache des elektrischen Stromes 	5	Arbeit mit Größen	elektrochemische Spannungsreihe
	 nennen verschiedene Spannungsquellen haben Größenvorstellungen über Spannungen in der Praxis nennen die Gefahren durch elektrische Spannungen kennen das Messgerät für die Spannung und die Schaltung des Messgerätes können Spannung messen 		SE: Spannungsmessungen	Spannungsrichtige Schaltungen
Gesetze für die Spannung	formulieren die Gesetze für die Spannung im verzweigten und im unverzweigten Stromkreis	3	SE: Messen in Stromkreisen mit zwei Bauelementen	Praktische Beispiele

8.1.4 Elektrischer Widerstand (10 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Ohmsches Gesetz	formulieren das ohmsche Gesetz und dessen Gültigkeitsbedingungen	2	SE: Experimentelles Untersuchen des Zusammenhangs zwischen Spannung und Stromstärke	
Größe elektrischer Widerstand	 erläutern die Definition des elektrischen Widerstandes können Widerstände aus Messwerten berechnen verwenden die Begriffe Leiter und Isolatoren 	3	Arbeit mit Größen	SV: Bedeutung der Leiter und der Isolatoren
Gesetze für den Widerstand	 formulieren die Gesetze für die Widerstände im verzweigten und im unverzweigten Stromkreis können Gesamtwiderstände in Stromkreisen mit zwei Bauelementen berechnen 	3	SE: Untersuchung der Gesetze für den Widerstand	Projekt: Anwendung und Berechnung elektrischer Schaltungen
Widerstandsgesetz	formulieren das Widerstandsgesetz für den spezifischen Widerstand	2	DE und SE: Untersuchen der Abhängigkeit des Widerstandes von Länge, Querschnitt und Material (spezifischer Widerstand)	Black Box

8.1.5 Elektrische Energie und Leistung (4 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Elektrische Energie	 kennen die elektrische Energie als Energieform können Energieumwandlungen beschreiben definieren die elektrische Arbeit definieren die physikalischen Größen elektrische Energie und Leistung haben Größenvorstellungen über elektrische Leistungen in der Praxis 	2	Erkunden von Naturgesetzen	Projekt: Elektrische Energie im Haushalt, Elektroinstallation in Gebäuden
Anwendungen der elektrischen Energie	 haben die Fähigkeit, die Kenntnisse über elektrische Energie, Arbeit und Leistung anzuwenden 	2		Aufgaben zum Berechnen der elektrischen Energie und
	 können den Wirkungsgrades am Beispiel von Kochplatte oder Tauchsieder untersuchen 			Leistung an praktischen Beispielen (Haushalt) Bedeutung der
	kennen den kWh-Zählerdiskutieren Umweltaspekte der Nutzung von Elektroenergie			elektrischen Energie sinnvolle Nutzung von Energie

8.2 Wärmelehre (23 h)

8.2.1 Temperatur (2 Stunden)

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Temperatur	 erläutern, dass die Temperatur als objektive Angabe angibt, wie heiß oder kalt ein Körper ist können Beispiele für Temperaturen bei Erscheinungen und Vorgängen in Natur und Technik nennen beschreiben Zusammenhang zwischen Temperatur und Teilchenbewegung kennen das Thermometer, die Celsiusskala, Fixpunkte und die Einheit der Temperatur 	2	Arbeit mit Größen	
	 nennen Fehlerquellen beim Messen und können diese vermeiden erläutern die Existenz des absoluten Nullpunktes der Temperatur haben Kenntnis über die Kelvinskala haben die Fähigkeit, Temperaturen zu messen 		SE: Temperaturmessungen	

8.2.2 Wärme (8 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Wärme	 erläutern die Wärme als Maß für die zugeführte oder abgegebene Energie können den Alltagsbegriff abgrenzen unterscheiden die Wärmeleitung, Wärmeströmung und Wärmestrahlung 	2	Arbeit mit Größen DE: Wärmeleitung SE: Bau eines Thermometers	Liguizungen
Wärmeaufnahme und Wärmeabgabe	 definieren die spezifische Wärmekapazität als stoffbeschreibende Größe formulieren die Gleichung für die Wärmemenge können Aufgaben zur Wärme lösen 	2	Arbeit mit Größen SE: Spezifischen Wärmekapazität eines festen Stoffs	Wärmedämmung beim Hausbau
Änderung des Aggregatzustandes	 Erläutern die Begriffe: Schmelzen, Sieden, Verdampfen, Kondensieren und Erstarren deuten der Aggregatzustandsänderungen mit Hilfe des Teilchenmodells nennen Beispiele für Umwandlungswärmen 	2	SE: Aufnahme eines Temperatur-Zeit-Diagramms fur das Sieden oder Schmelzen Hinweis auf Verdunsten	Anomalie des Wassers
Vorgänge aus Natur und Technik	 können Vorgänge beschreiben (Wetter, Jahreszeiten oder Klima - Auswahl) können Geräte beschreiben (4-Takt- Ottomotor, 4-Takt-Dieselmotor oder Kühlschrank - Auswahl) diskutieren Beispiele zur Wärmedämmung 	2	Erkunden von Naturgesetzen	Wettererscheinungen Wärmekraftmaschinen Wärmepumpen

8.2.3 Verhalten der Körper bei Temperaturänderung (5 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
ängenänderungen	 definieren den Begriff linearer Ausdehnungskoeffizient formulieren die Gleichung für die Längenänderung können Aufgaben zur Längenänderung lösen 	3	Arbeit mit Größen DE: Längenausdehnung von verschiedenen Stoffen	Proportionalität, Gleichungen Potenzen Thermometer, Dehnungsfugen, Bimetall
Volumenänderung	 können qualitativ die Temperaturabhängigkeit des Volumens von Flüssigkeiten und Gasen beschreiben deuten die Ausdehnung mit Hilfe des Teilchenmodells Anomalie des Wassers und erläutern die Bedeutung von Volumenänderungen in der Natur 	2		→ Chemie

8.2.4 Druck (8 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Auflagedruck und Kolbendruck	 erläutern die Gaseigenschaft Druck und den Begriff Kolbendruck können den Begriff auf praktische Beispiele anwenden können halbquantitative Betrachtungen zu hydraulischen Anlagen durchführen 	2	DE: Kolbendruck	Anwendungen des Kolbendrucks in der Natur, Medizin und Technik
Schweredruck in Flüssigkeiten	 beschreiben, wie der Schweredruck in Flüssigkeiten entsteht kennen die Abhängigkeiten des Schweredrucks von verschiedenen Größen 	2		
Luftdruck	beschreiben, wie der Luftdruck entsteht und können ihn experimentell nachweisen	2	DE/SE	
Auftrieb	 erläutern die Ursachen des Auftriebes formulieren das archimedische Gesetz können ihr Wissen über den Auftrieb anwenden (Sinken, Schweben, Steigen, Schwimmen) 	2	DE	Beispiele aus der Natur und Technik

Schulcurriculum Physik

Klassenstufe 9 (60 Stunden)

9.1 Elektrizitätslehre (40 h)

9.1.1 Magnetfeld (10 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Dauermagnete	 nennen Beispiele für Dauermagnete und die Magnetpole können Kräfte zwischen Dauermagnete beschreiben kennen den Begriff Magnetfeld und können Feldlinienbilder zeichnen kennen das Magnetfeld der Erde und den Kompass erläutern das Modell der Elementarmagnete 	3	Arbeit mit Modellen SE: Feld eines Dauermagneten	Computeranimationen Anwendung von Elektromagneten in der Technik Video: Erdmagnetismus
Elektromagnetismus	 beschreiben das Magnetfeld stromdurchflossener gerader Leiter und stromdurchflossener Spulen können Kraftwirkungen zwischen Dauermagnet und einem stromdurchflos- senen geraden Leiter, (Oersted) sowie zwischen stromdurchflossenen Spulen beschreiben können die Linke-Hand-Regel anwenden erläutern den Einfluss eines Eisenkernes auf die magnetische Wirkung einer Spule können das elektromotorische Prinzip beschreiben 	4	Arbeit mit Modellen (auch zur Erklärung von Erscheinungen) SE: Untersuchen der Kraftwirkungen einer Spule in Abhängigkeit von Stromstärke, Windungszahl und Länge der Spule Technische Anwendungen	Weitere Anwendungen des Elektromagnetismus

Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Elektrische Geräte	 haben die Fähigkeit, den Aufbau elektrischer Geräte zu beschreiben und deren Wirkungsweise zu erklären kennen den Aufbau und Wirkungsweise eines Elektromagneten kennen den Aufbau und Wirkungsweise eines Gleichstrommotors 	3	Technische Anwendungen SE: Elektromagnet SE: Gleichstrommotor	FI-Schalter oder Einsatz von Relais in der Technik

9.1.2 Elektromagnetische Induktion (14 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit	Methoden	Schulspezifische
Induktionsgesetz	 formulieren das Induktionsgesetzes (qualitativ und halbquantitativ) nennen die Bedingungen für das Entstehen einer Induktionsspannungen untersuchen die Möglichkeiten zur Erzeugung von Induktionsspannungen formulieren die lenzsche Regel und Zusammenhang mit dem Energieerhaltungssatz, nennen Beispiele für Selbstinduktion (qualitativ), haben die Fähigkeit, die lenzsche Regel auf Selbstinduktionsvorgänge anzuwenden 	h 6	DE: Induktions- erscheinungen SE: Untersuchen der Abhängigkeiten des Betrages der Induktionsspannung DE: Untersuchen von Ein- und Ausschaltvorgängen technische Anwendungen	Ergänzungen
Wechselstromgenerator	 haben einen Überblick über den Aufbau eines Wechselstromgenerators haben die Fähigkeit, die Wirkungsweise des Wechselstromgenerators zu beschreiben 	3	DE: Generator Historische Betrachtungen Technische Anwendungen	Projekt: Technische Anwendungen
Wechselspannung und Wechselstrom	 definieren die Begriffe Wechselspannung und Wechselstrom untersuchen den zeitlichen Verlauf von Wechselspannungen und Wechselströmen definieren die Größen Frequenz, Periodendauer und Amplitude können den Aufbau und Wirkungsweise des Wechselstromgenerators beschreiben 	3	Historische Betrachtungen Mathematische Methoden Technische Anwendungen	Projekt: Technische Anwendungen Oszillographenbilder zur Darstellung

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Transformator	 beschreiben den Aufbau und Wirkungsweise des Transformators definieren den Begriff Spannungsübersetzung am unbelasteten idealen Transformator formulieren die Gesetze der Stromstärkeübersetzung am belasteten Transformator erläutern den Einsatz von Transformatoren in technischen Geräten beschreiben Energieübertragung vom Kraftwerk bis zum Haushalt, Gefahren bei hohen Spannungen 	4	Technische Anwendungen SE: Gesetze am Transformator DE: Anwendungen eines Transformators	Projekt: Energie Energieübertragung Projekt: Energiepolitik Anwendung der Induktion in der Technik

9.1.3 Elektrische Leitungsvorgänge (16 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Leitungsvorgänge in Metallen	 können Metallbindung beschreiben und wissen, dass wanderungsfähige Elektronen vorhanden sind erläutern das Modell der Elektronenleitung erklären die Wärmewirkung und die Widerstandsveränderungen mit dem Teilchenmodell beschreiben die Temperaturabhängigkeit im metallischen Leiter haben die Fähigkeit, die I-U-Kennlinie zu interpretieren 	2	Arbeit mit Modellen SE: Temperatur- abhängigkeit metallischer Leiter (Glühlampe) Mathematische Methoden	→ Chemie
Leitungsvorgänge in Flüssigkeiten	 erläutern Leitungsvorgänge in Flüssigkeiten und in wässrigen Lösungen definieren den Begriff Dissoziation, wissen, dass Ionen Ladungsträger sind 	2	Demonstration der Leitungsvorgänge	→ Chemie Elektrolyse Batterien
Leitungsvorgänge in Gasen	erläutern Leitungsvorgänge in Gasenerläutern den Begriff Stoßionisation	2	Demonstration der Leitungsvorgänge	→ Chemie Blitze
Leitungsvorgänge im Vakuum	 haben einen Überblick über und unterscheiden Leitungsvorgänge in Gasen und im Vakuum nennen Beispiele für Glühemission und Fotoemission 	3	Demonstration der Leitungsvorgänge	
Allgemeines Leitungsmodell	 beschreiben das allgemeine Leitungsmodell beschreiben den Aufbau einer Elektronenstrahlröhre 	1	Arbeit mit Modellen	Nutzung als Bildröhre im Oszillographen, im Fernsehgerät

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Leitungsvorgänge in Halbleitern	 beschreiben den Aufbau eines Halbleiters erläutern Leitungsmechanismen in n- und p- Leitern (Elektronen, Defektelektronen, Eigenleitung, Dotierung von Halbleitern, n- und p-Leitung, Störstellenleitung) beschreiben den Aufbau einer Halbleiterdiode wissen, dass eine Diode eine Durchlass- und Sperrrichtung besitzt 	6	Arbeit mit Modellen SE: Diode SE: Thermistor DE: Demonstration der Wirkungsweise als Schalter und Verstärker	Überblick über Anwendungen: Hinweis auf Fotodiode, Lichtemitterdiode, Laserdiode, Solarzelle, integrierte Schaltkreise Beispiele aus der Praxis
	 erstellen und interpretieren I-U-Diagrammen beschreiben die Temperaturabhängigkeit des Widerstandes eines Halbleiters erklären die Temperaturabhängigkeit kennen den Nutzen eines Thermistors zur Temperaturmessung beschreiben, wie ein npn-Transistor arbeitet 			

9.2 Mechanik (20 h) 9.2.1 Gleichförmige geradlinige Bewegung (4 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Gesetze der gleichförmigen geradlinigen Bewegung	 kennen den Begriff Kinematik untersuchen den Zusammenhang von Weg und Zeit und formulieren das Weg-Zeit- Gesetz interpretieren s-t- und v-t- Diagramme haben die Fähigkeit, die Gesetze anzuwenden lösen Aufgaben (rechnerisch und grafisch) 	4	Mathematische Methode SE: (Auswahl)	Bewegungen im Alltag und im Sport Abschätzen von Geschwindigkeiten, Tempolimit im Straßenverkehr

9.2.2 Gleichmäßig beschleunigte geradlinige Bewegung (7 Stunden)

Inhalte	Kompotonzon	Zoit	Methoden	Schulspezifische
iiiiaite	Kompetenzen Die Schülerinnen und Schüler	Zeit h	wethoden	Schuispezifische Ergänzungen
Gesetzmäßigkeiten der gleichmäßig beschleunigten geradlinigen Bewegung	 definieren die physikalische Größe Beschleunigung erläutern die Definition der Beschleunigung stellen Zusammenhänge zwischen Weg und Zeit, Geschwindigkeit und Zeit sowie Beschleunigung und Zeit bei Bewegungen aus der Ruhe für die gleichmäßig beschleunigte Bewegung her interpretieren Gesetze und entsprechende Diagramme definieren die Begriffe Durchschnittsgeschwindigkeit, Momentangeschwindigkeit lösen Anwendungsaufgaben und komplexe Anwendungsaufgaben 	4	Mathematische Methode Arbeit mit Größen DE: Beschleunigung eines Wagens	
Freier Fall	 formulieren Gesetze zum freien Fall lösen Aufgaben zum freien Fall 	3	Mathematische Methode Arbeit mit Größen SE: Experimentelles Bestimmen von g Historische Betrachtungen	Das Leben des Galilei

9.2.3 Überlagerung geradliniger Bewegungen (9 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Überlagerung von Bewegungen in gleicher Richtung	 erläutern die Relativität von Bewegungen beschreiben den senkrechter Wurf nach oben und lösen Anwendungsaufgaben 	4	Mathematische Methode Arbeit mit Modellen DE: Senkrechter Wurf nach oben	Überlagerung von Geschwindigkeiten
Überlagerung zweier Bewegungen, die senkrecht zueinander gerichtet sind	 beschreiben die Überlagerung zweier Bewegungen, die senkrecht zueinander gerichtet sind leiten die Bahngleichung für den waagerechten Wurf her lösen Anwendungsaufgaben 	5	Arbeit mit Modellen Mathematische Methode DE: Experimentelles und theoretisches Untersuchen des waagerechten Wurfs	Projekt: Würfe

Schulcurriculum Physik

Klassenstufe 10 (75 Stunden)

10.1 Mechanik (40 h)

10.1.1 Kraft (9 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Kraft	definieren die Kraft als gerichtete Größekönnen vektorielle Additionen ausführen	3	Mathematische Methoden, Arbeit mit Größen	
Zerlegung von Kräften	 können Kräfte an der geneigten Ebene zerlegen erläutern die Haft- und Gleitreibung (quantitativ) 	3	SE: (Auswahl) SE: Reibung	Luftreibung
Verformende Wirkung der Kraft	 haben Kenntnis über das hookesche Gesetz und die Fähigkeit, dieses anzuwenden lösen Aufgaben zur Kraft 	3	SE: Experimentelles Erarbeiten des hookeschen Gesetzes	

10.1.2 Newtonsche Axiome (8 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Beschleunigende Wirkung der Kraft, Grundgesetz der Dynamik	 untersuchen experimentell die Beschleunigung bei verschiedenen Kräften formulieren das newtonsche Grundgesetz und seine Folgerungen 	2	DE: Experimentelles Untersuchen der Beschleunigung und Kraft	Wirkungsweise einer Luftkissenbahn
Trägheitsgesetz	formulieren das Trägheitsgesetzkönnen kräftefreie Bewegungen beschreiben	1		Beobachten und Erklären von diversen Trägheitswirkungen
Wechselwirkungsgesetz	formulieren das Wechselwirkungsgesetz	1	DE: Luftkissenbahn	Sonnensystem
Überblick über Anwendungen	haben die Fähigkeit, die newtonschen Axiome anzuwendenlösen komplexe Aufgaben	3		
Geschichte	geben einen Überblick über die Entwicklung der Mechanik bis zum Ende des 19. Jh.	1	Historische Betrachtungen	SV: Würdigung von Kopernikus, Galilei, Kepler und Newton

10.1.3 Mechanische Arbeit und mechanische Energie (8 Stunden)

Inhalte Kompetenzen		Zeit	Methoden Schulspezifische	
·	Die Schülerinnen und Schüler	h		Ergänzungen
Mechanische Arbeit	 definieren die Arten der mechanischen Arbeit (Hubarbeit, Beschleunigungsarbeit, Federspannarbeit) und ihre Gleichungen deuten die Arbeit als Fläche im F-s- Diagramm kennen die Arbeit als Prozessgröße haben die Fähigkeit zum Lösen von komplexen Aufgaben 	2	Mathematische Methoden, Arbeit mit Größen Arbeit mit Diagrammen: Flächenbestimmung in speziellen Diagrammen	Herleiten spezieller Berechnungsformeln
Mechanische Energie	 definieren die Arten mechanischer Energien (kinetische und potenzielle Energie) und ihre Gleichungen wissen, dass Energie eine Zustandsgröße ist erläutern die Beziehung zwischen mechanischer Arbeit und Energie können den Systembegriff anwenden 	3	Arbeit mit Größen	
Energieerhaltungssatz	 kennen den Energieerhaltungssatz der Mechanik und wenden diesen an haben die Fähigkeit zur Anwendung des EES 	3	Mathematische Methoden SV: Perpetuum Mobile	1. Klausur

• lösen Anwendungsaufgaben

Realschule

10.1.4 Impuls und Stoß (7 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit	Methoden	Schulspezifische Ergänzungen
Impuls und Kraftstoß	definieren die physikalischen Größen Impuls und Kraftstoß formulieren den Zusammenhang zwischen Impuls und Kraftstoß	2 2	Arbeit mit Größen	Erganzungen
	lösen Aufgaben zum Impuls und Kraftstoß			
Impulserhaltungssatz	 formulieren den Impulserhaltungssatz formulieren die Gesetzmäßigkeiten zum zentralen unelastischen Stoß und zum zentralen elastischen Stoß 	3	DE: Bestimmung von Geschoss- geschwindigkeiten	Stoßarten Weitere Anwendungen der einzelnen Stoßarten
	können Anwendungen zu den Stoßprozessen beschreibenlösen Aufgaben zum Stoß		DE: Luftkissenbahn	
Überblick über Anwendungen	können Anwendungen bei Raketen beschreiben	2	SV: Raketentechnik	Historische Entwicklung der Raketentechnik

10.1.5 Gleichförmige Kreisbewegung (5 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Gleichförmige Kreisbewegung		5	Arbeit mit Größen DE: Untersuchen der	Corioliskraft und Anwendungen, Anwenden auf
	 formulieren die Gesetze der Kinematik und der Dynamik der gleichförmigen Kreisbewegung lösen Aufgaben 		Größen, von denen die Zentralkraft abhängt	kreisförmige Bewegungen der/um Himmelskörper

10.1.6 Gravitationsgesetz (3 Stund• kennen das Gravitationsgesetz (Hinweis auf den Begriff Gravitationsfeld, z. B.

leh)alte	Kompetenzen	Zeit	Methoden	Schulspezifische
•	Die Schülerinnen und Schüler	h		Ergänzungen
Gravitationsgesetz	 formulieren das Gravitationsgesetz (Hinweis auf den Begriff Gravitationsfeld,z.B. Gravitationsfeld der Erde) können "Schwerelosigkeit" erklären 		3 Historische Betrachtungen	Projekt: Entwicklung der Raumfahrt SV: Das Leben des I.
	nennen die 1. kosmische Geschwindigkeitlösen Aufgaben zum Gravitationsgesetz			Newton 2. Klausur

10.2 Schwingungen und Wellen (20 h)

10.2.1 Mechanische Schwingungen (10 Stunden)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Mechanische Schwingungen	 definieren den Begriff mechanische Schwingung haben die Fähigkeit, das Zustandekommen 	10	SE: Federschwinger SE: Fadenpendel SE: Bestimmen von g am	Akustische Schwingungen
	mechanischer Schwingungen zu erklären • definieren die Größen zur Beschreibung mechanischer		Fadenpendel Ein bewertetes Schülerexperiment!	Hemmungspendel
	 Schwingungen kennen die Formeln zur Berechnung der Periodendauer eines Federschwingers und eines Fadenpendels 		Arbeit mit Größen, Protokollieren eines Experiments,	Besuch eines Technikmuseums
	 können Energieumwandlungen beschreiben kennen den Begriff Dämpfung einer Schwingung 		Fehlerbetrachtung	
	erläutern, wie erzwungene Schwingungen und Resonanz zustande kommen			

10.2.2 Mechanische Wellen (10 Stunden)

TOIZIZ MICCHAINSCHE WCHCH	10 Granadily			
Inhalte	Kompetenzen	Zeit	Methoden	Schulspezifische
	Die Schülerinnen und Schüler	h		Ergänzungen
Mechanische Wellen	 definieren den Begriff mechanische Welle und nennen Eigenschaften einer Welle können Größen zur Beschreibung mechanischer Wellen anwenden 	10	DE: Wellenpendel Arbeit mit Größen, Arbeit mit Diagrammen	Weitere Arten von Wellen (Schallwellen)
	 formulieren die Gleichung für die Ausbreitungsgeschwindigkeit mechanischer Wellen definieren den Begriff stehende Welle 			3. Klausur

Realschule

Deutsche Schule Tokyo Yokohama

Schulcurriculum Sekundarstufe I

Klassen 11-12

Physik

Zur Erprobung durch die KMK genehmigt

vergl. Schreiben Frau Meyer-Wyk, Sächsisches Staatsministerium für Kultus vom 6. Juli 2012 (wie eingereicht genehmigt, siehe KMK-Schreiben vom 29.8.2012)

1 Zur Konzeption des Schulcurriculums Physik

Unverzichtbares Element der gymnasialen Ausbildung ist eine solide naturwissenschaftliche Grundbildung. Sie ist eine wesentliche Voraussetzung, um im persönlichen und gesellschaftlichen Leben sachlich richtig und selbstbestimmt entscheiden und handeln zu können, aktiv an der gesellschaftlichen Kommunikation und Meinungsbildung teilzuhaben und an der Mitgestaltung unserer Lebensbedingungen im Sinne einer nachhaltigen Entwicklung mitzuwirken.

Das Fach Physik leistet dazu einen wichtigen Beitrag. Die Schüler machen sich mit den Grundlagen einer Wissenschaft vertraut, die Erscheinungen und Vorgänge in der unbelebten Natur untersucht und deren Erkenntnisse in der Technik eine vielfältige Anwendung finden. Mit physikalischen Phänomenen in der Natur und mit Anwendungen physikalischer Erkenntnisse in der Technik kommen die Schüler ständig in Berührung.

Die Schüler erfahren, dass die Wissenschaft Physik unter den Naturwissenschaften eine besondere Stellung einnimmt. Physikalische Erkenntnisse, Denk- und Arbeitsweisen haben nicht nur das Weltbild unserer Zeit in entscheidender Weise geprägt, sondern haben auch andere Naturwissenschaften und die Technik in starkem Maße gefördert. Andererseits wurde und wird die Entwicklung der Physik durch andere Naturwissenschaften und die Technik vorangetrieben. Daher sind solide physikalische Grundkenntnisse Voraussetzung für physikalisch relevante Berufe und Studienrichtungen.

Der Physikunterricht in der gymnasialen Oberstufe ist auf das Erreichen der allgemeinen Hochschulreife ausgerichtet und bietet dem Schüler neben einer vertieften Allgemeinbildung eine wissenschaftspropädeutische Bildung und eine allgemeine Studierfähigkeit bzw. Berufsorientierung. Er konzentriert sich dementsprechend auf das Verstehen physikalischer Sachverhalte und auf das Entwickeln von Basisqualifikationen, die eine Grundlage für anschlussfähiges Lernen in weiteren schulischen, beruflichen und persönlichen Bereichen bilden.

Die fachlichen Schwerpunkte orientieren sich an den Einheitlichen Prüfungsanforderungen (**EPA**) für das Fach Physik an Gymnasien.

Die Anforderungen der EPA spiegeln sich in dem für die Deutschen Schulen im Ausland entwickelten **Kerncurriculum** wider.

Das **Schulcurriculum** für das Fach Physik

- greift die im Kerncurriculum ausgewiesenen Anforderungen auf und konkretisiert sie,
- weist darüber hinaus fachliche Vertiefungen und Erweiterungen aus und ermöglicht zusätzliche Schwerpunktsetzungen entsprechend dem Schulprofil,
- zeigt Verknüpfungen zum Methodencurriculum der Schule und verweist auf fachübergreifende Bezüge.

Überfachliche und fachspezifische Kompetenzen, die im Physikunterricht im Zusammenhang mit verschiedenen Inhalten kumulativ entwickelt werden, sind nachfolgend ausgewiesen:

Schülerinnen und Schüler können

- geeignete Methoden der Erkenntnisgewinnung auswählen und anwenden, d. h.
 - naturwissenschaftliche Sachverhalte analysieren, beschreiben und Fragen bzw. Probleme klar formulieren,
 - naturwissenschaftliche Sachverhalte vergleichen, klassifizieren und Fachtermini definieren,
 - kausale Beziehungen ableiten,
 - Sachverhalte mit Hilfe naturwissenschaftlicher Kenntnisse erklären,

- sachgerecht deduktiv und induktiv Schlüsse ziehen,
- geeignete Modelle (z. B. Wellenmodell) anwenden,
- mathematische Verfahren zur Lösung von Aufgaben anwenden,
- Untersuchungen und Experimente zur Gewinnung von Erkenntnissen nutzen und dabei die Schrittfolge der experimentellen Methode anwenden
- naturwissenschaftliche Verfahren in Forschung und Praxis sowie Entscheidungen und Sachverhalte auf der Grundlage naturwissenschaftlicher Fachkenntnisse und unter Abwägung verschiedener (z. B. wirtschaftlicher, technischer) Aspekte bewerten und sich einen fachlich fundierten Standpunkt bilden.
- bei der Beschaffung von Informationen und bei der fachwissenschaftlichen Kommunikation im Physikunterricht ihre Medienkompetenz anwenden und sach- und adressatengerecht zu kommunizieren.

Schülerinnen und Schüler können

- Aufgaben und Problemstellungen analysieren und Lösungsstrategien entwickeln,
- geeignete Methoden für die Lösung von Aufgaben auswählen und anwenden sowie Arbeitsphasen zielgerichtet planen und umsetzen,
- zu einem Sachverhalt relevante Informationen aus verschiedenen Quellen (z. B. Lehrbuch, Lexika, Internet) sachgerecht und kritisch auswählen,
- Informationen aus verschiedenen Darstellungsformen (z. B. Texte, Symbole, Diagramme, Tabellen, Schemata) erfassen, diese verarbeiten, darstellen und interpretieren sowie Informationen in andere Darstellungsformen übertragen,
- sein Wissen systematisch strukturieren sowie Querbezüge zwischen Wissenschaftsdisziplinen herstellen,
- Arbeitsergebnisse verständlich und anschaulich präsentieren und geeignete Medien zur Dokumentation, Präsentation und Diskussion sachgerecht nutzen.

Schülerinnen und Schüler können

- individuell und im Team lernen und arbeiten,
- den eigenen Lern- und Arbeitsprozess selbstständig gestalten sowie ihre Leistungen und ihr Verhalten reflektieren,
- Ziele für die Arbeit der Lerngruppe festlegen, Vereinbarungen treffen und deren Umsetzung realistisch beurteilen.
- angemessen miteinander kommunizieren und das Lernen im Team reflektieren,
- den eigenen Standpunkt artikulieren und ihn sach- und situationsgerecht vertreten sowie sich sachlich mit der Meinung anderer auseinandersetzen,
- seinen eigenen und den Lernfortschritt der Mitschüler einschätzen und ein Feedback geben.

2 Vereinbarungen zur Leistungsbewertung

2.1 Leistungsbewertung in der Qualifikationsphase

Die folgenden Angaben entsprechen den vom Bund-Länder-Ausschuss für schulische Arbeit im Ausland am 28.09.1994 i.d.F. vom 13.07.2005 verabschiedeten "Richtlinien für die Ordnungen (Reifeprüfung und Hochschulreifeprüfung) für den Unterricht der gymnasialen Oberstufe im Klassenverband an deutschen Auslandsschulen".

2.1.1 Anzahl und Dauer der Klausuren

Halbjahr	Klausur(en)	Dauer (Minuten)
11.1	2	mind. 90
11.2	2	mind. 90
12.1	2	mind. 90
12.2	1	mind. 90

Die Klausuren sollen in der Regel einen Umfang von 90 Minuten haben, eine der Klausuren in 11.2 kann einen Umfang von 135 Minuten haben und einen fachpraktischen Anteil enthalten. Eine Klausur in 11 wird regional einheitlich geschrieben.

Schülerinnen und Schüler, die Physik als schriftliches Prüfungsfach gewählt haben, schreiben eine der Klausuren in 12.1 unter Abiturbedingungen (180 Minuten).

2.1.2 Hinweise zur Erstellung der Klausuren

Klausuren im Fach Physik in den Jahrgangsstufen 11 und 12 werden nach Maßgabe der "Einheitliche(n) Prüfungsanforderungen in der Abiturprüfung - Physik" (Beschluss der Kultusministerkonferenz vom 01.12.1989 i.d.F. vom 05.02.2004) erstellt. Dabei wird besonders ("Fachspezifische darauf geachtet. die dort unter Punkt 2.2 Beschreibung Anforderungsbereiche") und Punkt 3.2 ("Hinweise zum Erstellen einer Prüfungsaufgabe") aufgeführten Anforderungsbereiche abzudecken: Leistungsüberprüfungen sollen AB II zu mehr als 50 % beinhalten, AB I und III etwa gleich viel, wobei AB I mehr als AB III vorkommt. Die Aufgaben mit Hilfe der Operatorenliste der KMK formuliert (Entwurfsstand http://www.kmk.org/bildung-schule/auslandsschulwesen/kerncurriculum.html, Anhang).

2.1.2.1 Verwendung von Hilfsmitteln in Klausuren

Für die Klausuren in der Qualifikationsphase sind in der Regel folgende Hilfsmittel uneingeschränkt zugelassen:

- Taschenrechner (nichtprogrammierbar, WTR/GTR mit num. Lösungsverfahren),
- Allgemeines Tafelwerk (Paetec-Verlag).

2.1.3 Bewertung von schriftlichen Leistungen

Die schriftlichen Leistungen der Schülerinnen und Schüler werden in den Jahrgangsklausuren der Jahrgänge 11 und 12 und in der schriftlichen Abiturprüfung nach folgendem Schlüssel ermittelt:

<u> </u>			
15 Punkte	≥ 95 %	07 Punkte	≥ 55 %
14 Punkte	≥ 90 %	06 Punkte	≥ 50 %
13 Punkte	≥ 85 %	05 Punkte	≥ 45 %
12 Punkte	≥ 80 %	04 Punkte	≥ 40 %
11 Punkte	≥ 75 %	03 Punkte	≥ 34 %
10 Punkte	≥ 70 %	02 Punkte	≥ 27 %
09 Punkte	≥ 65 %	01 Punkte	≥ 20 %
08 Punkte	≥ 60 %	00 Punkte	< 20%

Für die Bewertung der Leistungen in der Abiturklausur werden, in Anlehnung an die "Einheitliche(n) Prüfungsanforderungen in der Abiturprüfung - Physik" (Beschluss der Kultusministerkonferenz vom 01.12.1989 i.d.F. vom 05.02.2004), folgende Rahmenbedingungen festgelegt:

Die Note "ausreichend" (05 Punkte) wird nur erteilt, wenn annähernd die Hälfte der erwarteten Gesamtleistung aus allen drei Aufgaben (mindestens 45 %) erbracht worden ist.

Ermittlung der Gesamtleistungen

Die Gesamtleistung einer Schülerin/eines Schülers in den Kursen 11.1/11.2/12.1/12.2 setzt sich aus ihrer/seiner schriftlichen Leistung die in den Klausuren ermittelt wird, sowie der "laufenden Kursarbeit" zusammen. Diese umfasst mündliche Leistungen aus der direkten Unterrichtsbeteiligung (auch Vorbereitung und Nachbereitung des Unterrichtes), Leistungen die im Schülerpraktikum erbracht werden und sonstige Leistungen wie z.B. Referate oder Präsentationen.

Die Ermittlung der Leistung für die "laufende Kursarbeit" obliegt der Fachlehrerin/dem Fachlehrer. Grundsätzlich soll der Unterricht so gestaltet werden, dass die Schülerinnen und Schüler die Gelegenheit bekommen, mündliche, praktische und sonstige Leistungen zu erbringen. Mit welcher Gewichtung diese Leistungen in die "laufenden Kursarbeit" eingehen, legt der Fachlehrer u.U. auch in Absprache mit der Lerngruppe fest.

Für die Ermittlung der Gesamtleistung (Gewichtung schriftliche Leistung - laufende Kursarbeit) finden die gültigen "Notenberechnungstabellen für die Oberstufe" Anwendung.

3 Übersicht über die Jahrgangsstufen In der folgenden Übersicht sind die regional verbindlichen Inhalte und Kompetenzen sowie schulspezifische Absprachen und Verknüpfungen zum schuleigenen Methodencurriculum dargestellt.

1.Halbjahr Jahrgang 11 (14 Wochen = 42 WoStunden)					
Inhalte/ Themenbereiche	Kompetenzen	Wo Std.	Methodencurriculum	schulspezifische Absprachen	
Elektrische Felder	Schülerinnen und Schüler können elektrische Felder quantitativ	30			
	und durch Feldlinienbilder beschreiben				
Elektrisches Feld	 den physikalischen Begriff "Feld" erklären und Beispiele 		Beschreiben		
	für Felder nennen.		unterschiedlicher		
	 definieren, was man unter einem elektrischen Feld versteht. 		Wechselwirkungen mit Hilfe des Feldkonzeptes		
	 verschiedene experimentelle Vorgehensweisen beschreiben, mit denen man elektrische Felder sichtbar machen kann. 				
	 die Begriffe "Influenz" und "Polarisation" unterscheiden und anwenden. 				
Feldlinienbilder	 erklären, was eine Feldlinie ist und welche Regeln bei deren Verwendung gelten. 		Arbeiten mit Modellen		
	 die Feldlinienbilder radialsymmetrischer und homogener Felder zeichnen und Felder zwischen kugelförmigen, geladenen Körpern konstruieren. 		Veranschaulichen von Sachverhalten mit Hilfe von Skizzen, Zeichnungen,		
	 definieren, was eines homogenen Feldes ist. 		Größengleichungen		
	 erklären, was ein "Faradayscher Käfig" ist und wie die Entstehung des entsprechenden Feldes zustande kommt. 				
	ausgewählte Gleichungen und Diagramme zur elektrischen Feldstärke und elektrischen Energie (siehe				

Elektrische	Kondensator) interpretieren und anwenden:		
Feldstärke	 die physikalische Größe "elektrische Feldstärke" definieren. 		
	 experimentelle Anordnungen zur Messung der elektrischen Feldstärke beschreiben und erklären, wie man damit die elektrische Feldstärke bestimmt. 		Demoexperiment: Bestimmung der Feldstärke
	 die Formel zur Berechnung der elektrischen Feldstärke anwenden. 		
	 den Zusammenhang zwischen Feldstärke und Plattenabstand sowie Feldstärke und Spannung in einem Plattenkondensator qualitativ angeben 	Planen und Durchführen von	Größenordnungen elektrischer Feldstärken Schülerexperiment: Zusammenhang E-
	die Größen Spannung und Potential unterscheiden:	Experimenten	
Energie und Arbeit im elektrischen Feld - Spannung und Potential	 eine Analogiebetrachtung zwischen der Hubarbeit eines Körpers im Gravitationsfeld und der verrichteten Arbeit bei Bewegung einer Ladung im homogenen elektrischen Feld herstellen. 		U-d
	 den Begriff des elektrischen Potentials erklären und die Formel zur Berechnung angeben. 		
	 die physikalische Größe "elektrische Spannung" als Potentialdifferenz deuten und vom Begriff des Potentials unterscheiden. 	DE: Beobachten, Transfer, Verknüpfen	
	 die Einheit der Spannung als abgeleitete Größe angeben 	von Zusammenhängen	
	 die Energieumwandlung in einer Braunschen Röhre erläutern. 	Zusammermangem	
	 eine Formel zur Berechnung der Geschwindigkeit von Elektronen, die durch homogene elektrische Felder beschleunigt werden, herleiten und anwenden. 		
	 die Einheit des Elektronenvolts (eV) angeben und ihre Bedeutung erklären. 		
	das Coulombsche Gesetz interpretieren und anwenden,		

Coulombsches	sowie Analogiebetrachtungen zum Gravitationsfeld durchführen:	
Gesetz	 ein Experiment beschreiben, mit dem man den Zusammenhang zwischen der Feldstärke und dem Abstand von einer geladenen Kugel messen kann und die Messergebnisse deuten. 	
	 das Coulombsche Gesetz interpretieren und damit Berechnungen auf Teilchenebene durchführen. 	
	Analogie zwischen dem Coulombschen Gesetz und dem Gravitationsgesetz betrachten.	
Kondensatoren	Kondensatoren hinsichtlich ihrer Bauform und ihrer spezifischen Anwendungen mit Hilfe physikalischer Größen beschreiben und kennen die Begriffe Energie des elektrischen Feldes und kinetische Energie geladener Teilchen im elektrischen Feld.	
	 Aufbau eines Plattenkondensators beschreiben, skizzieren und Funktionsweise erläutern. 	
	 das elektrische Feld eines Plattenkondensators mithilfe von Feldlinienbildern darstellen, beschreiben und erläutern. Arbeiten mit Modellen	
	 Analogiebetrachtungen elektrisches Feld und Gravitationsfeld durchführen. DE: Beobachten, Transfer, Verknüpfen von 	
	die Kenngröße "Kapazität" eines Kondensators charakterisieren	
	 die physikalische Größe "Flächenladungsdichte" definieren und ihren Zusammenhang mit der Feldstärke erklären. 	
	die "elektrische Feldkonstante" experimentell bestimmen bzw. die Messwerte eines Bestimmungsexperimentes	

	auswerten.		
Elektrische Feldkonstante	 die Definition der Kapazität eines Kondensators herleiten und deren Bedeutung erläutern, sowie Berechnungen damit durchführen. 		Plattenkondensator
	den Begriff Dielektrikum erläutern und anwenden.		als Energie- und
Materie im elektrischen Feld	 verschiedene technische Kondensatoren hinsichtlich ihrer Bauform und ihrer spezifischen Anwendungen mithilfe physikalischer Größen beschreiben und Berechnungen dazu durchführen. 		Ladungsspeicher Begriff: Energiedichte
CICKEROONCE I T CIG	Schaltung von Kondensatoren		
	 Parallelschaltung und Reihenschaltung von Kondensatoren skizzieren und erläutern. 		
	 Gesetzmäßigkeiten erläutern, anwenden und Berechnungen durchführen. 	Schülerexperimente	
	Experimente zur Bestimmung elektrischer Größen selbstständig planen, durchführen und auswerten		Demoexperiment
	 den Versuch zur Entladung eines Kondensators skizzieren, aufbauen und durchführen, sowie experimentell auswerten. 		Schülerexperiment:
	Diagramme interpretieren und auswerten.		Entladekurve eines Kondensators
	 den Begriff der Halbwertszeit erläutern, diese zeichnerisch ermitteln, berechnen und anwenden. 	Arbeit mit Diagrammen	Experimentelle
	 Versuchsergebnisse zur Berechnung verschiedener physikalischer Größen (z.B. C, U(T)) nutzen und durchführen. 		Bestimmung der Halbwertszeit
	den Millikanversuch beschreiben und interpretieren		
Millikanversuch	 den klassischen Millikanversuch skizzieren, beschreiben, erläutern und die Bedingungen mathematisch formulieren. 		
	Berechnungen dazu durchführen und anwenden.		
		•	

elektrischer Ströme (Darstellungsformen)	 Elementarmagnete, Strom (Eingangsvoraussetzung) magnetische Felder von Dauermagneten, stromdurchflossenen, geraden Leitern, von Spulen und das Magnetfeld der Erde beschreiben 		Arbeiten mit Modellen	
Magnetfelder	Gesetzmäßigkeiten • die Ursachen des Magnetismus benennen –		Arbeiten mit Modellen	Weißsche Bezirke
Magnetfelder	Die Schülerinnen und Schüler können Magnetfelder quantitativ beschreiben und kennen wichtige	'-		
Manualfalder	Die Oak Waring an und Oak Was Live	12		Anwendungen: Linearbeschleuniger
	technische Anwendungen unter Nutzung der Gesetzmäßigkeiten der elektrischen Felder erklären		Präsentationen	
	 die Ablenkung von Ladungsträgern innerhalb des Feldes in Abhängigkeit von Beschleunigungs- und Kondensatorspannung erläutern und berechnen 		Lacaminomiangon	
	 Bahn eines Elektrons im Kondensator beschreiben, die Bahngleichung erläutern, in Analogie zum waagerechten Wurf herleiten herleiten und anwenden 		DE: Beobachten, Transfer, Verknüpfen von Zusammenhängen	Demoexperiment: Funktionsweise einer Braunschen Röhre
	 die Gleichung für Geschwindigkeit der Elektronen in Abhängigkeit von der Beschleunigungsspannung herleiten und anwenden 			
Elektronenstrahlröhre	 Funktionsweise einer Elektronenstrahlröhre beschreiben 			Joule
	die Bewegung geladener Teilchen im homogenen elektrischen Feld beschreiben		Cimalationon	Zusammenhang Elektronenvolt und
	 die Größe Elementarladung benennen, erläutern und den 		Arbeiten mit Simulationen	klass. Methode
	 Messergebnisse zum Millikanversuch graphisch darstellen, interpretieren und auswerten. 			Sink-/Steigmethode und Vergleich mit

Kräfte auf stromdurchflossene	(Eingangsvoraussetzungen).	
Leiter	 die Richtung der Kraft auf einen stromdurchflossenen Leiter im Magnetfeld mithilfe der Dreifingerregel bestimmen (Eingangsvoraussetzung). 	Demoexperiment: Stromwaage
magnetische Feldstärke	 die magnetischen Flussdichte (Feldstärke B) in Analogie zur elektrischen Feldstärke betrachten. 	o a o a made
magnetische Feldkonstante,	 die Gleichung für die magnetische Feldstärke mithilfe geeigneter Messdaten herleiten und anwenden. 	Magnetische
magnetische Flussdichte	 den Einfluss der Windungszahl, der Spulenlänge und der Stromstärke auf die magnetische Flussdichte einer Spule experimentell bestimmen quantitativ beschreiben. 	Feldstärke in der Umgebung eines geraden Leiters
relative Permeabilität	 den Einfluss ferromagnetischer Stoffe auf die magnetische Feldstärke erläutern (relative Permeabilitätszahl). 	

2. Halbjahr Jahrgangsstufe 11 (14 Wochen = 42 WoStunden)					
Inhalte/ Themenbereiche	Kompetenzen	Wo Std.	Methodencurriculum	schulspezifische Absprachen	
Magnetisches Feld Elektronen im Magnetfeld	Die Schülerinnen und Schüler können die Ablenkung bewegter Ladungen im homogenen Magnetfeld mit Hilfe der Lorentzkraft erklären und unter speziellen Bedingungen berechnen	15			
Kräfte auf bewegte Ladungsträger	 Betrag, Richtung und Orientierung der Lorentzkraft auf freie, bewegte Ladungsträger im homogenen Magnetfeld bestimmen. 				
Halleffekt	 die Entstehung der Hallspannung anhand einer Skizze erläutern und die Gleichung für ihre Berechnung herleiten. 				
	 die magnetische Feldstärke B mit einer Hallsonde messen. 		Schülerexperiment		
Fadenstrahlrohr	 das physikalische Prinzip zur Bestimmung der spezifischen Ladung von Elektronen mithilfe des Fadenstrahlrohres beschreiben. 			Relativistische Deutung	
	 die Gleichung für die spezifische Ladung herleiten und die Elektronenmasse bestimmen. 			Schraubenbahnen	
	Die Schülerinnen und Schüler können technische Anwendungen unter Nutzung der Gesetzmäßigkeiten der magnetischen Felder erklären.		Präsentationen	qualitativ beschreiben	
Massenspektrometer	 die Funktionsweise für das Massenspektrometer mit dem Geschwindigkeitsfilter unter Nutzung der Gesetzmäßigkeiten magnetischer Felder erklären. 			Polarlicht.	
Teilchenbeschleuniger	Teilchenbeschleuniger unter Nutzung der Gesetzmäßigkeiten magnetischer Felder erklären.			magnetische Falsche, Magnetschwebebahn	

Induktion	Die Schülerinnen und Schüler können das Auftreten einer Induktionsspannung unter	15		
Induktion am bewegten Leiter	 Verwendung des Induktionsgesetzes für vielfältige Anordnungen qualitativ erklären und quantitativ bestimmen 		Anwendung von Verfahren der Mathematik	
Induktionsgesetz	 den magnetischen Fluss als Zusammenhang zwischen magnetischer Flussdichte B und durchsetzter Fläche A definieren 			schräge Leiterbewegung
	 die Induktionsspannung bei zeitlicher Änderung des Magnetflusses bestimmen, diesen Zusammenhang als Induktionsgesetz formulieren und anwenden 			
Energieerhaltung und Lenzsches Gesetz	 das Lenzsche Gesetz als Folgerung aus dem Energieerhaltungssatz herleiten, damit das Vorzeichen für die Induktionsspannung begründen und anwenden 			
	 können die Formel zur Berechnung der Energie des magnetischen Feldes einer Spule anwenden 			
Wirbelströme	 die Entstehung von Wirbelströmen erklären und anwenden (Wirbelstrombremse) 			
Selbstinduktion	 das Phänomen der Selbstinduktion und seine Wirkungen beschreiben und anwenden 			Induktionsherd
	die Induktivität als Kenngröße einer Spule bestimmen, die Selbstinduktionsspannung messen, sowie den zeitlichen Verlauf beim Ein- und Ausschalten einer Spule im Gleichstromkreis interpretieren			Zündanlage im Auto

Wechselstromkreise	Die Schülerinnen und Schüler können	12		
Mathematische	die Erzeugung der Wechselspannung und des Wechselstromes mit dem Induktionsgesetz erklären			
Beschreibung von Wechselstrom und- spannung	 die Wechselstromstärke und die Wechselspannung graphisch darstellen und zwischen Effektivwerten und Maximalwerten unterscheiden 			
	 die Wechselstromstärke und die Wechselspannung als mathematisch zeitliche Änderung der Stromstärke bzw. Spannung in Abhängigkeit von der Winkelgeschwindigkeit (Kreisfrequenz) beschreiben 			
	die Widerstände für ohmsche Bauelemente, Spulen und Kondensatoren in Gleich- und Wechselstromkreisen experimentell bestimmen, deren unterschiedliches Verhalten beschreiben, vergleichen und das Phasenverhalten der Spannung und Stromstärke begründen		Durchführung von Schülerexperimenten	
Widerstände und	ohmsche, induktive und kapazitive Widerstände berechnen und deren Frequenzabhängigkeit begründen			Zeigerdiagramme
Schaltungen im Wechselstromkreis	Gesetze der Reihen- und Parallelschaltung von Widerständen im Wechselstromkreis anwenden und Scheinwiderstände berechnen			Sieb- und Sperrkreis

Inhalte/ Themenbereiche	Kompetenzen	Wo Std.	Methodencurriculum	schulspezifische Absprachen
Elektromagn. Schwingungen und Wellen	Schülerinnen und Schüler können	18		
Schwingkreis	 den Aufbau eines elektromagnetischen Schwingkreises beschreiben und seine Wirkungsweise erklären (Aufbau eines Schwingkreises, elektrodynamische Ursachen für die Entstehung von Schwingungen, Energieumwandlungen – Analogien zum Fadenpendel und Federschwinger, Frequenzverhalten, Resonanz) 		Arbeiten mit Simulationen	
	 die Thomsonsche Schwingungsgleichung interpretieren und anwenden 			
Eigenschaften elektromagnetischer Welle	 kennen ungedämpfte und gedämpfte elektromagnetische Schwingungen und können deren Ursachen erklären 			
	 kennen erzwungene elektromagnetische Schwingungen und können Resonanzerscheinungen erklären (Eigenfrequenz, Erregerfrequenz, Resonanz, Resonanzkurve) 			
	 das physikalische Phänomen der Welle unter Verwendung von Kenngrößen und Diagrammen beschreiben und Erscheinungen bei der Wellenausbreitung mit den für die Wellen charakteristischen Eigenschaften erklären 		Arbeiten mit Diagrammen und Modellen	Deiraria vas
Dipol	 den Aufbau des Hertzschen Dipols als offenen Schwingkreis beschreiben und seine Wirkungsweise erklären 			Prinzip von Sender/Modulation, Empfänger/Demodulat

	 Analogiebetrachtungen durchführen zwischen mechanischen und elektromagnetischen Schwingungen mechanischen und elektromagnetischen Wellen Experimente zur Bestimmung von elektrischen Größen selbstständig durchführen und auswerten 		DE: Beobachten, Transfer, Verknüpfen von Zusammenhängen Durchführung von Schülerexperimenten	Mobiltelefon, WLAN, Mikrowelle, Strahlungsgrenzwerte und gesundheitliche Belastung)
Wellenoptik	Die Schülerinnen und Schüler können	12		
Wellenmodell	 die Notwendigkeit der Einführung des Wellenmodells für das Licht am Beispiel der Beugung und Brechung (Dispersion) begründen 		Arbeiten mit Modellen	Wiederholung Strahlenoptik - Reflexion, Brechung, Abbildungen
D	 Beugungs- und Interferenzerscheinungen am Doppelspalt beschreiben und erklären 			mit Linsen, Lichtgeschwindigkeit,
Beugung Interferenz	 die Gleichungen zur Berechnung von Beugungs- und Interferenzerscheinungen interpretieren und beim Berechnen von Wellenlängen und Gitterkonstanten und der spektralen Lichtzerlegung anwenden (Reflexionsgitter, , Dispersion) 		Durchführung von Schülerexperimenten	Beugung am Hindernis/Spalt Durchführung von Schülerexperimenten: Spurabstand einer CD
	 die Farben des sichtbaren Bereiches und weitere Wellenlängenbereiche des Lichtes in das elektromagnetische Spektrum einordnen 			
	 den Begriff Polarisation erklären und anwenden 			
Polarisation				
Fotoeffekt	Die Schülerinnen und Schüler können	12		
	 den äußeren lichtelektrischen Effekt beschreiben und ihn aus der Sicht der klassischen Wellentheorie und der Quantentheorie deuten (Einsteins Photonenbegriff, Lichtquant) 		Arbeiten mit Simulationsprogrammen	Max Planck und seine Quantenhypothese/ Strahlungsformel
		l		1

Einsteingleichung	 Widersprüche zwischen den Beobachtungen beim äußeren lichtelektrischen Effekt und den Grundlagen des Wellenmodells erläutern die Einsteingleichung und ihre graphische Darstellung interpretieren und mit ihrer Hilfe das Plancksche Wirkungsquantum als universelle Naturkonstante sowie Energiebeträge und Ablösearbeiten bestimmen Licht und Elektronen sowohl Wellen- als auch Teilcheneigenschaften zuordnen die Unbestimmtheitsrelation deuten das stochastische Verhalten quantenphysikalischer Objekte erklären 	Durchführung von Experimenten Arbeiten mit Diagrammen	Demoexperiment: Fotozelle Comptoneffekt Elektroneninterferenz und Elektronenbeugung, Doppelspaltexperiment mit Atomen
			Anwendungen in Technik und Medizin erklären (Laser)

2.Halbjahr Jahrgang 12 (13 Wochen)				
Inhalte/ Themenbereiche	Kompetenzen	Wo Std.	Methodencurriculum	schulspezifische Absprachen
Physik der	Schülerinnen und Schüler können	15		
Atomhülle Rutherford'scher Streuversuch	 den Rutherford'schen Streuversuch beschreiben und kennen die Grundüberlegungen, die zum Rutherford'schen Atommodell führen 		Internetrecherche Simulationsprogramme nutzen	
	 einfache Quantenmechanische Modelle erläutern 			
Quantenhafte Emission von Licht	 die quantenhafte Emission von Licht in einen Zusammenhang mit der Strukturvorstellung der Atomhülle bringen 			
Linienspektrum des Wasserstoffs	 das Linienspektrum des Wasserstoffatoms und dessen Beschreibung durch Balmer erklären und Berechnungen mit dem Energieniveauschema durchführen 			
Bohrsche Postulate	 die Bohrschen Postulate benennen und das Bohrsche Atommodell erklären kennen weitere Spektrenarten (z.B. Absorptionsspektren) 		DE: Beobachten, Transfer, Verknüpfen von Zusammenhängen	Herleitungen der Formeln zur Berechnung der Bahnradien/Energien wasserstoffähnliche Atome, Sternspektren, Fraunhofersche Linien, Spektralanalyse
Franck-Hertz- Versuch	 den Franck-Hertz-Versuch beschreiben und interpretieren 		Durchführen von Experimenten	
Röntgenstrahlen	 einen Zusammenhang zwischen dem Aufbau der Atomhülle und dem Periodensystem herstellen 			

Comptoneffekt	 die Erzeugung von Röntgenstrahlen erklären und Beispiele für Anwendungen und Gefahren erläutern den Begriff des Photons auf weitere Frequenzbereiche ausdehnen 			Ausblick auf das quantenmechanische Atommodell
		45	1	
Physik des	Schülerinnen und Schüler können	15		
Atomkerns				
Radioaktive	■ radioaktive Strahlung in Zusammenhang		Präsentationen	
Strahlung, Arten und	mit Kernzerfällen bringen und wichtige und typische Kernzerfälle erläutern und kennen			
Eigenschaften	die Eigenschaften der ionisierenden			
	Strahlung (Natürlicher Kernzerfall und			
	Zerfallsreihen, Nachweisgeräte (z. B. Geiger-Müller-Zählrohr), Methoden zur			
Zerfallsgesetz	Altersbestimmung (C-14-Methode, Uran-			
	Blei-Methode))			
	(Eingangsvoraussetzungen)			
	 kennen ein Kernmodell 			Potenzialtopfmodell,
	 können den Zerfall mathematisch mit dem 			Tröpfchenmodell
	Zerfallsgesetz beschreiben (Halbwertszeit,			
	Zerfallskonstante, Zerfallskurve, Aktivität) (Eingangsvoraussetzungen)			
Kernkräfte	 ausgehend von den Kernkräften und der Kernbindungsenergie die Stabilität der 			
Kernbindungsenergie	Atomkerne und die Erzeugung von			
Rembindungsenergie	Energie durch Kernspaltung und Fusion			
	erklären. Hierzu können die Schülerinnen			
	und Schüler den Begriff Massendefekt in einen Zusammenhang bringen, kennen			
	den Begriff Kettenreaktion			Atombombe
	einen Überblick über Leptonen, Hadronen			

	und Quarks geben		
Kernspaltung Kernkraftwerke	 einen Überblick über die technische Realisierung der Energiegewinnung durch Kernspaltung und ihrer Randbedingungen und Gefahren geben, kennen verschiedene Reaktortypen und können die Funktionsweise eines KKW erläutern 	Präsentationen Podiumsdiskussion	Sicherheit in KKW Ausstieg aus der "Kernenergie" Alternative Energien
Biologische Wirkung radioaktiver Strahlung	 einen Überblick über die biologische Wirkung radioaktiver Strahlung geben und können einen Überblick über die biologische Wirkung radioaktiver Strahlung geben und Maßnahmen des Strahlenschutzes erläutern (Eingangsvoraussetzungen) 		

Operatoren im Fach Physik (Entwurf: Stand März 2012)

(In der Regel können Operatoren je nach Zusammenhang und unterrichtlichem Vorlauf in jeden der drei Anforderungsbereiche AFB eingeordnet werden; hier soll der überwiegend in Betracht kommende Anforderungsbereich genannt werden. Die erwarteten Leistungen können durch zusätzliche Angabe in der Aufgabenstellung präzisiert werden.)

Operator	Beschreiben der erwarteten Leistung	Beispiele	AFB
ableiten	auf der Grundlage von Erkenntnissen sachgerechte Schlüsse ziehen	Leiten Sie aus den experimen- tellen Ergebnissen (Linienspek- tren, Franck-Hertz-Versuch,) die Notwendigkeit ab, das ruther- fordsche Atommodell durch Quantisierungsbedingungen zu erweitern.	II
abschätzen	durch begründete Überlegungen Größenordnungen angeben	Schätzen Sie ab, ob hier die Verwendung einer 10-A-Sicherung ausreichend ist.	II
analysieren	systematisches Untersuchen eines Sachverhaltes, bei dem Bestandteile, dessen Merkmale und ihre Beziehungen zueinander erfasst und dargestellt werden	Analysieren Sie den Versuchsaufbau auf mögliche Fehlerquellen.	II
anwenden	einen bekannten Zusammenhang oder eine bekannte Methode auf einen anderen Sachverhalt beziehen	Wenden Sie das Induktionsgesetz auf die beschriebene Situation an.	II
aufstellen von Hypothesen	eine begründete Vermutung formulieren	Stellen Sie eine Hypothese auf, von welchen Größen die magnetische Flussdichte in einer stromdurchflossenen Spule abhängen könnte.	III
auswerten	Daten, Einzelergebnisse oder andere Elemente in einen Zusammenhang stellen, gegebenenfalls zu einer Gesamtaussage zusammenführen und Schlussfolgerungen ziehen	Werten Sie die Versuchsreihen zur Untersuchung der magnetischen Flussdichte in einer stromdurchflossenen Spule aus (und geben Sie die daraus resultierende Formel an).	III
begründen	Sachverhalte auf Regeln, Gesetzmäßigkeiten bzw. kausale Zusammenhänge zurückführen	Begründen Sie, warum die rote Linie des Wasserstoffspektrums keinen Photoeffekt bei Kalium bewirkt.	III
benennen	Begriffe und Sachverhalte einer vorgegebene Struktur zuordnen	Benennen Sie die Bauteile der abgebildeten Röntgenröhre.	1
berechnen	Ergebnisse aus gegebenen Anfangswerten rechnerisch generieren	Berechnen Sie die Gravitations- feldstärke am Äquator aus dem mittleren Radius und der mittleren Dichte der Erde.	II
beschreiben	Sachverhalte wie Objekte und Prozesse nach Ordnungsprinzipien strukturiert unter Verwendung der Fachsprache wiedergeben	Beschreiben Sie Aufbau und Durchführung des Millikan- Versuchs.	II
bestimmen	rechnerische, grafische oder inhaltliche Generierung eines Ergebnisses	Bestimmen Sie mit Hilfe des Diagramms den Wert des planckschen Wirkungsquantums.	I
beurteilen, bewerten	zu einem Sachverhalt eine selbstständige Einschätzung nach fachwissenschaftlichen und fachmethodischen Kriterien formulieren	Beurteilen Sie die Anwendbarkeit der C-14-Methode zur Altersbestimmung in der beschriebenen Situation.	III
beweisen	mit Hilfe von sachlichen Argumenten durch logisches Herleiten eine Behauptung/Aussage belegen bzw. widerlegen	Beweisen Sie, dass die Ansätze von Bohr und De Broglie zur gleichen Quantenbedingung führen.	III

10.3 Kernphysik (15 h)

Inhalte	Kompetenzen Die Schülerinnen und Schüler	Zeit h	Methoden	Schulspezifische Ergänzungen
Atomkern	nennen die Bausteine des Atomkerns und deren Eigenschaften nennen atomare Größenvorstellungen können die Existenz der Isotope erklären	2	Arbeit mit Modellen, Historische Betrachtungen	Liganzungen
Erscheinungen der Radioaktivität	 kennen die Arten der Strahlung und deren Eigenschaften beschreiben die Funktionsweise eines Geiger- Müller-Zählrohrs nennen Maßnahmen des Strahlenschutzes definieren die Begriffe Spontanzerfall, Halbwertszeit beschreiben Beispiele für Anwendungen der radioaktiven Strahlung 	6	SV: Strahlenschutz SV: Nachweisgeräte Arbeit mit Modellen, Historische Betrachtungen, Arbeit mit Diagrammen	Weitere Möglichkeiten des Nachweises radioaktiver Strahlung Strahlenunfälle
Kernumwandlungen	 beschreiben den Vorgang der Kernspaltung nennen Größenvorstellungen zur frei werdenden Energie unterscheiden ungesteuerte und gesteuerte Kettenreaktionen beschreiben das Wirkprinzip von Kernkraftwerken diskutieren die Sicherheit von Kernkraftwerken, (Entsorgung, Umweltaspekte) diskutieren die Verantwortung der Menschen, insbesondere der Wissenschaftler und Politiker bei der Nutzung der Kernenergie (der Fall Oppenheimer) 	7	Arbeit mit Modellen,	Atomwaffen Aktuelle Bundespolitik zum Ausstieg aus der Kernenergie SV: KKW 4. Klausur

Realschule